A comparative study of riverine ¹³⁷Cs dynamics during high-flow events at three contaminated river catchments in Fukushima.

Takuya Niida¹, Yoshifumi Wakiyama²*, Hyoe Takata², Keisuke Taniguchi³, Honoka Kurosawa⁴, Kazuki Fujita⁵, Alexei Konoplev²

1. KANSO TECHNOS CO., LTD.

2. Institute of Environmental Radioactivity, Fukushima University, Japan

3. National Institute of Technology, Tsuyama College, Japan

4. Graduate school of Symbiotic System Science and Technology, Fukushima University, Japan

5. Fukushima Prefectural Centre for Environmental Creation, Japan

*Corresponding author: Yoshifumi Wakiyama

Affiliation: Institute of Environmental Radioactivity, Fukushima University,

Address: 1 Kanayagawa, Fukushima city, 960-1296, Japan

Tel +081 (24) 503-2978

E-mail: wakiyama@ipc.fukushima-u.ac.jp

Riverine ¹³⁷Cs dynamics during high-flow events

Variation in ¹³⁷Cs concentrations

Highlights

Riverine ¹³⁷Cs was measured in three rivers during three high-flow events

Riverine ¹³⁷Cs concentrations reflect the spatial pattern of ¹³⁷Cs in catchments

Catchments with greater forest cover export less particulate ¹³⁷Cs

¹³⁷Cs desorbed from suspended solids exceeds dissolved ¹³⁷Cs flux in erosive events

1 Abstract

This study presents the temporal variations in riverine ¹³⁷Cs concentrations and fluxes to 2 3 the ocean during high-flow events in three coastal river catchments contaminated by the 4 Fukushima Daiichi Nuclear Power Plant accident. River water samples were collected at 5 points downstream in the Niida, Ukedo, and Takase Rivers during three high-flow events that occurred in 2019–2020. Variations in both the dissolved ¹³⁷Cs concentration and 6 137 Cs concentration in suspended solids appeared to reflect the spatial pattern of the 137 Cs 7 8 inventory in the catchments, rather than variations in physico-chemical properties. Negative relationships between the ¹³⁷Cs concentration and δ^{15} N in suspended sediment 9 10 were found in all rivers during the intense rainfall events, suggesting an increased contribution of sediment from forested areas to the elevated ¹³⁷Cs concentration. The 11 12 ¹³⁷Cs flux ranged from 0.33 to 18 GBq, depending on the rainfall erosivity. The particulate 13 ¹³⁷Cs fluxes from the Ukedo River were relatively low compared with the other two rivers and were attributed to the effect of the Ogaki Dam reservoir upstream. The ratio of 137 Cs 14 desorbed in seawater to ¹³⁷Cs in suspended solids ranged from 2.8% to 6.6% and tended 15 to be higher with a higher fraction of exchangeable ¹³⁷Cs. The estimated potential release 16 of ¹³⁷Cs from suspended solids to the ocean was 0.048–0.57 GBq, or 0.8–6.2 times higher 17 18 than the direct flux of dissolved ¹³⁷Cs from the river. Episodic sampling during high-flow events demonstrated that the particulate ¹³⁷Cs flux depends on catchment characteristics 19 and controls ¹³⁷Cs transfer to the ocean. 20

21 *Keywords:* ¹³⁷Cs, δ^{15} N, desorption, land use, suspended solid

22

23 **1. Introduction**

24 The large amount of rainfall and steep topography in Fukushima, compared with other 25 areas contaminated by nuclear disasters, results in frequent high-flow events that redistribute ¹³⁷Cs in the terrestrial environment (e.g., Evrard et al., 2015; Konoplev et al., 26 2016; 2018). During high-flow events triggered by huge rainstorms, most of this 137 Cs is 27 28 exported in particulate form (Yamashiki et al., 2014; Hayashi et al., 2016; Nakanishi et al., 2021). Yamashiki et al. (2014) show that 61% of the annual ¹³⁷Cs wash-off in the 29 30 Abukuma River basin between August 2011 and May 2012 occurred during a single rainstorm. Hayashi et al. (2016) estimated the ¹³⁷Cs wash-off in the Uda River basin 31 during a rainstorm in 2015 as 0.30% of the total ¹³⁷Cs inventory in the entire basin, which 32 33 exceeded the annual ¹³⁷Cs wash-off in 2014. Efforts have been made to reproduce the 34 ¹³⁷Cs wash-off during high-flow events at various spatiotemporal scales using numerical 35 simulations (e.g., Kinouchi et al., 2015; Sakuma et al., 2017, 2019). Much effort has been made to quantify the ¹³⁷Cs redistribution in terrestrial areas. 36

Riverine ¹³⁷Cs dynamics during high-flow events are important for riverine ¹³⁷Cs 37 38 dispersion to ocean environments. Studies have attempted to reproduce the long-term riverine ¹³⁷Cs discharge to the ocean (Tsumune et al. 2020) and event-based dispersion 39 40 of particulate ¹³⁷Cs in coastal areas (Kamidaira et al. 2021). These simulations evaluated the dissolved and particulate ¹³⁷Cs discharges separately. However, recent studies of ¹³⁷Cs 41 in coastal seawater indicated that particulate ¹³⁷Cs exported via rivers during a huge 42 rainstorm increased the dissolved ¹³⁷Cs concentration in seawater, which was attributed 43 to ¹³⁷Cs desorption resulting from ion exchange between suspended solids (SS) and 44

45 seawater (Takata et al., 2020, 2021). Takata et al. (2020) reported that the dissolved ¹³⁷Cs
46 concentration in nearshore seawater increased immediately after Typhoon Hagibis in
47 2019, and ¹³⁷Cs desorbed from SS accounted for approximately 30% of the dissolved
48 ¹³⁷Cs. Understanding riverine ¹³⁷Cs dynamics may improve the predictability of ¹³⁷Cs
49 dispersion in oceanic environments.

Studies of the temporal variation in the dissolved ¹³⁷Cs concentration in rivers 50 under high-flow conditions have important implications for ¹³⁷Cs dynamics (e.g., Ueda et 51 52 al., 2013; Shinomiya et al., 2014; Hashimoto et al., 2015; Murakami et al., 2016; Tsuji et al., 2016; Iwagami et al., 2017). A high dissolved ¹³⁷Cs concentration during rainstorms 53 was observed in forested catchments and was attributed to ¹³⁷Cs leaching from organic 54 55 matter in the forest litter layer (e.g., Tsuji et al., 2016; Iwagami et al., 2017). However, 56 those studies evaluated relatively small river catchments located in forested headwater catchments. Wakiyama et al. (in press) assessed the minimum dissolved ¹³⁷Cs 57 58 concentration at peak water discharge during two high-flow events midstream of the 59 Abukuma River. Because of the dependencies of hydrological processes and sediment 60 dynamics in river basins in Japan (e.g., Asano et al. 2018a, 2018b), it would be worth 61 testing the applicability of the findings for small river catchments to large river 62 catchments quantitatively.

63 Compared with dissolved ¹³⁷Cs, factors controlling particulate ¹³⁷Cs have not been 64 fully discussed. It is often stated that the particle size distribution controls the ¹³⁷Cs 65 concentration in SS (He and Walling, 1996, Yoshimura et al. 2015a). However, several 66 observations during high-flow events did not necessarily reveal proportionality between the particle size distribution and ¹³⁷Cs concentration in SS (Hashimoto et al., 2015; Wakiyama et al., in press). Although the organic matter content is another potential cause of the variation in ¹³⁷Cs concentration (Naulier et al., 2017), there is no field evidence for the effect of organic matter in high-flow events. As majority of ¹³⁷Cs transported in particulate form, variations in ¹³⁷Cs concentration in SS and its controlling factors should be high on agenda.

The land use of catchments might be important for determining riverine ¹³⁷Cs 73 dynamics. Plot-scale observations found differences in ¹³⁷Cs wash-off with different land 74 75 use (e.g., Yoshimura et al., 2015b; Wakiyama et al., 2019). Wakiyama et al. (2019) found that the ¹³⁷Cs concentration in eroded sediment was three times higher from a forested 76 77 area than from farmland. Based on observations of 29 river catchments in the Fukushima 78 area, Taniguchi et al. (2019) observed an increased particulate ¹³⁷Cs flux from river 79 catchments with predominant farmland, paddy fields, and urban areas. The change in the 80 contribution of each land use component during high-flow events should cause variation in the ¹³⁷Cs concentration in SS. Several authors used carbon and nitrogen stable isotopes 81 82 to estimate the contributions of sediment sources to riverbed (Laceby et al., 2016a) and 83 reservoir bottom (Huon et al., 2018) sediment. The use of these stable isotopes may help 84 the interpretation of riverine ¹³⁷Cs dynamics. Regarding the impact on oceanic 85 environments, the contributions from different land uses may also influence the magnitude of ¹³⁷Cs desorption, which depends on the properties of SS (Takata et al., 2015). 86 87 From the above discussion, episodic sampling campaigns at downstream points in

88 river catchments and comparative analyses may enable the discussion of riverine ^{137}Cs

89 dynamics and their influence on ocean environments. This study presents the results of a 90 sampling campaign at downstream points in three radiologically contaminated 91 catchments during three different high-flow events. Based on the temporal variation in the particulate and dissolved ¹³⁷Cs concentrations in the river water and the magnitude of 92 the ¹³⁷Cs fluxes from the catchments, we discuss the factors controlling riverine ¹³⁷Cs 93 94 concentrations by testing their correlations with the physico-chemical properties of water 95 and SS and by investigating their relationship with stable nitrogen and carbon isotopes. Furthermore, we evaluated the ¹³⁷Cs flux, including the desorption of ¹³⁷Cs from 96 97 suspended sediment in the ocean, by coupling hydrological datasets and laboratory 98 experiments.

99

100 2. Materials and Method

101 **2.1. Study site**

102 The study sites were the Niida, Ukedo, and Takase River basins in the Hamadori 103 area, Fukushima Prefecture; the sampling points in the three rivers were in Haramachi, 104 Kiyobashi, and Takase districts, respectively (Figure 1). These river basins were highly 105 contaminated by the Fukushima Daiichi Nuclear Power plant accident. Table S1 shows 106 the characteristics of each river catchment. The areas of the Niida, Ukedo, and Takase River catchments were 206, 143, and 262 km², respectively. The respective mean ¹³⁷Cs 107 108 inventories based on the fourth airborne survey in the Niida, Ukedo, and Takase River catchments were 853, 2359, and 701 kBq m^{-2} . The forest covers in the respective 109 110 catchments were 67.9%, 79.7%, and 83.3%. The upper Niida River catchment was subject to decontamination during mainly in 2014–2016. The Ogaki Dam reservoir, midstream of the Ukedo River, has a catchment area of 110 km² and mean ¹³⁷Cs inventory of 2360 kBq m⁻² (Funaki et al., 2020). The spatial land use patterns in the three river catchments are similar. The downstream portions are in coastal areas and dominated by residences and agricultural land. The upstream portions in the Abukuma Highlands have dispersed agricultural land. The midstream portions between the highlands and coastal plain are dominated by forested areas on steep slopes (Figure S1).

118

119 **2.2. River water sampling**

120 River water was sampled at the three sites during three high-flow events on 9–10 121 September 2019 (SEP19), 14–21 July 2020 (JUL20-1), and 28–29 July 2020 (JUL20-2). 122 SEP19 was triggered by Typhoon Faxai, JUL20-1 by prolonged rainfall during the East 123 Asian rainy season, and JUL20-2 by intensive rainfall at the end of the East Asian rainy 124 season. The R-factor in the Revised Universal Soil Loss Equation was calculated using 125 the Rainfall Intensity Summarization Tool (United States Department of Agriculture, 126 2013) following Laceby et al. (2016b). Table 1 shows the catchment mean rainfall and 127 R-factor based on the Thiessen territory created by the locations of Japan Meteorological 128 Agency weather stations. Although the mean catchment rainfall amount was similar in 129 SEP19 and JUL20-2, the SEP19 event R-factor was about three times higher than that of 130 JUL20-2. Water height (m) at 10-minute intervals was downloaded from the Fukushima 131 Prefecture website (http://kaseninf.pref.fukushima.jp/gis/) and converted into water 132 discharge, Q (m³ s⁻¹), based on a water height and water discharge curve (*H*–*Q* curve).

133 The Q was converted to specific water discharge, SWD (mm 10 min⁻¹).

In these events, 30–40 L river water was collected using a 10-L polyethylene bucket from bridges close to the hydrological observation points. Six to eight river water samples were collected per event per site (Figure 2). The sample ID and sampling time were found in Tables S2 and S3.

138

139 **2.3. Sample processing and analyses**

140 The sampled water was placed in a 50 L barrel and left for 1–2 days to allow most 141 of the SS to settle to the bottom of the barrel. Then, the supernatant was filtered using a 142 0.45-µm-mesh membrane filter, and the captured solids were transferred to an 143 evaporation dish. The SS on the filter and barrel bottom was combined in the evaporation 144 dish. The integrated SS sample was dried at 50°C and then homogenized and 145 disaggregated carefully in a mortar so as not to destroy the sediment particles. The SS concentration, SSC (mg L^{-1}), was calculated by dividing the SS weight by the volume of 146 147 sampled water. Filtered water was passed through an ANFEZH column, an absorbent consisting of Prussian blue absorbent, to immobilize the dissolved ¹³⁷Cs, as described 148 149 previously (Konoplev et al., 2021).

The integrated SS were measured to obtain the ¹³⁷Cs concentration in SS, Cs_{ss} (Bq kg⁻¹). The ¹³⁷Cs concentration in the ANFEZH was measured to obtain the dissolved ¹³⁷Cs concentration, Cs_{dis} (mBq L⁻¹). All ¹³⁷Cs concentration measurements were performed using standard electrode coaxial Ge detectors (GC4020, Canberra, USA) with 154a relative efficiency of 42.6% at the Institute of Environmental Radioactivity, Fukushima155University. Measurements had a minimum statistical error of < 5% for ^{137}Cs in SS and <15610% for dissolved ^{137}Cs . An apparent distribution coefficient, K_d (L kg⁻¹) was calculated157by dividing the Cs_{ss} by the Cs_{dis}.

The particulate and dissolved 137 Cs fluxes (Bq) were estimated based on the 137 Cs 158 159 concentrations and hydrological data. Each event was separated into 6 or 8 time spans, depending on the number of samples in the event. The particulate ¹³⁷Cs flux was obtained 160 161 by multiplying SS discharge, a product of total water discharge and SSC, in each time span by the corresponding Cs_{ss} . Similarly, the dissolved ¹³⁷Cs flux was obtained by 162 163 multiplying the water discharge in each time span by the corresponding Cs_{dis}. Due to difference in sampling interval among the events, we compared the ¹³⁷Cs fluxes in 48 164 165 hours before and after time of water peak discharge, i.e., 24 hours before the peak and 24 hours after the peak. 166

167 The SS samples were further analyzed to determine the carbon contents and 168 particle size distribution. The total carbon content in SS was measured using the TOC-L 169 CSH (Shimadzu, Japan). The particle size distribution was also measured using the 170 Mastersizer 3000 (Malvern Panalytical, UK). The particles ranging from 0.05 to 3 mm 171 were scanned and classified into 51 categories. The volumetric ratio of the scanned range was converted into a specific surface area, SSA ($m^2 g^{-1}$) by assuming spherical sediment 172 173 particles. Portions of the filtrates were used to measure the concentrations of major cations (K⁺, Na⁺, Ca²⁺, and Mg²⁺) by ion chromatography (DIONEX 1100, Thermo Fisher 174 175 Scientific, USA).

To evaluate the contributions of sediment sources, the stable isotope of carbon and nitrogen, i.e., δ^{13} C and δ^{15} N (‰), in SS were measured. The SS samples were packed in tin foil and then placed in a desiccator with concentrated HCl to remove the carbonates. FLASH2000–ConFlo IV–DELTA V ADVANTAGE (Thermo Fisher Scientific) was used for the analyses. Reference standards of L-alanine, L-proline, and L-tyrosine provided by the Japan Chemical Analysis Center were measured to calibrate the δ^{13} C and δ^{15} N in SS samples.

183

184 **2.4. Desorption and speciation of** ¹³⁷**Cs**

185 Five SS samples collected peak water discharge (ND-SEP19-3, ND-JUL20-2-3, UD-186 SEP19-3, TS-SEP19-3, and TS JUL20-2-4), were selected because the amounts of these 187 SS were sufficient for both the desorption experiments and subsequent sequential 188 extraction. Seawater filtered through a 0.45-µm membrane filter was used for the extraction experiments; the dissolved ¹³⁷Cs concentration in the seawater was 2.7 mBq/L. 189 190 The desorption experiment was performed following the methods of Takata et al. (2015, 191 2021). Briefly, the SS samples were placed in 18 L containers with seawater to achieve a 192 solid-to-liquid ratio of 1 g to 5 L in an 18-L container and shaken for 30 minutes or 1 day. 193 Then, the SS samples were separated by filtration through a 0.45-µm pore size membrane filter. The ¹³⁷Cs in the seawater after shaking was co-precipitated with ammonium 194 molybdophosphate (AMP) to quantify the dissolved ¹³⁷Cs concentration. The desorption 195 ratio was calculated by dividing the dissolved ¹³⁷Cs concentration in the seawater by the 196 ¹³⁷Cs concentration in SS. 197

198	To evaluate the mobility of SS-borne ¹³⁷ Cs, its speciation, i.e., the composition of
199	¹³⁷ Cs in the exchangeable, organic-bound, and particle-bound fractions, was evaluated in
200	sequential SS extraction experiments performed following the procedure of Tsukada and
201	Ohse (2016). Briefly, 1 mol L^{-1} CH ₃ COONH ₄ was used to extract the exchangeable
202	fraction, and 30% H_2O_2 with HNO ₃ was used to extract the organic fraction. Each leached
203	solution was transferred to a plastic container, and the ¹³⁷ Cs concentration was measured
204	using Ge gamma-ray spectrometry. The remaining fraction was assumed to be strongly
205	bound to sediment particles, i.e., the particle-bound fraction.
206	
207	3. Results and Discussion
208	3.1. Temporal variation in the riverine ¹³⁷ Cs concentrations
209	Figure 3 shows the temporal variations in the Cs_{ss} , the Cs_{dis} , and SSC. Table 3 lists
210	all data of the Cs_{ss} , the Cs_{dis} , and SSC. In the Niida River, the ¹³⁷ Cs concentration in SS
211	peaked during the peak discharge phase in SEP19, whereas increasing trends were found
212	throughout JUL20-1 and JUL20-2. There was no common trend for the Cs_{dis} , which
213	tended to be synchronized with the specific water discharge in SEP19 but was relatively
214	stable during JUL20-1 and JUL20-2. The stable concentrations during these two events
215	in 2020 might reflect the impact of Typhoon Hagibis in 2019. The Ukedo River had low
216	SSCs throughout the three events, compared with the other two rivers. This low SSC
217	might be influenced by the Ogaki Dam upstream. Its ¹³⁷ Cs concentration in SS peaked
218	after a few hours of peak flow in SEP19, while the ¹³⁷ Cs in SS did not show much
219	variation in JUL20-1 and JUL20-2. The Cs_{dis} tended to increase with the specific water 10

discharge in SEP19. The Takase River had the highest ¹³⁷Cs concentration in SS before the peak water discharge in SEP19 and JUL20-2. The ¹³⁷Cs concentration in SS obviously decreased during the peak discharge phase. The Cs_{dis} tended to decrease with time during all three events. However, the temporal patterns in the riverine ¹³⁷Cs concentrations differed according to the event, even within the same river catchment.

To evaluate the response of the ¹³⁷Cs concentrations to sediment and water discharge, we plotted the normalized Cs_{dis} and normalized Cs_{ss} against the logarithms of the specific discharge and SSC, following the analyses by Tsuji et al. (2016) (Figure 4). The Niida River showed significant positive correlations or all four relationships (p < 0.05). The Ukedo River had a significant positive correlation between SSC and the ¹³⁷Cs concentration in SS. The Takase River had negative correlations of the Cs_{dis} with both the SWD and SSC but positive correlations of the K_d with both the SWD and SSC.

232 These results differed from those of Tsuji et al. (2016), who found a positive correlation for the Cs_{dis}, but no correlation for the ¹³⁷Cs concentration. The negative 233 correlation for the Takase River could be explained by the spatial pattern of the ¹³⁷Cs 234 235 inventory in the catchment. As shown in Figure 1, the Takase River catchment has a 236 highly contaminated area downstream, whereas the other two river catchments have the 237 most contaminated areas upstream. This situation might result in the dilution of dissolved ¹³⁷Cs by water upstream, with a relatively low ¹³⁷Cs inventory in the Takase River and 238 the opposite for the Niida and Ukedo Rivers. The variation in the ¹³⁷Cs concentration 239 might be reflected in the spatial pattern of the ¹³⁷Cs inventory in these river catchments. 240 In this context, the positive correlation between the ¹³⁷Cs concentrations in SS and Cs_{dis} 241

in the Niida River could also be explained by increased contributions from upstream, with a high 137 Cs inventory. The difference in the range of the 137 Cs inventory in the catchments might explain the discrepancy with the results of Tsuji et al. (2016). The range in the 137 Cs inventory in our study catchments was two orders of magnitude, as shown in Figure 1, whereas that in the catchments in Tsuji et al. (2016) was within 1000–3000 Bq m⁻². These results suggest that the variation and spatial pattern of the 137 Cs inventory were reflected in the riverine 137 Cs concentrations in the catchments evaluated.

Interestingly, all three rivers showed positive relationships between SSC and K_d . Previous studies often found negative correlations between these parameters (e.g., Ueda et al., 2013; Murakami et al., 2016). IAEA (2020) also observed negative relationships upstream in the Mano, Niida, and Ohta Rivers, which have maximum catchment areas of 21 km². By contrast, Wakiyama et al. (in press) found a significant positive correlation during high-flow events midstream of the Abukuma River. These results suggest a dependency of the variation in K_d on the catchment scale.

256

3.2. Factors controlling the ¹³⁷Cs concentration

Previous studies found significant correlations of the 137 Cs concentrations and the apparent distribution coefficient with the physico-chemical properties of water and SS, such as the positive correlation between K⁺ concentration and dissolved 137 Cs concentration (Tsuji et al., 2019), positive correlation between SSA and 137 Cs concentration in SS (Yoshimura et al., 2015a), total organic carbon- 137 Cs concentration in SS (Naulier et al., 2017), and negative correlation between EC and K_d (IAEA, 2020), 264 dependencies of K_d on particle size distribution (Abrill and Fraga, 1996). Although the results of Figure 3 suggest that the spatial pattern of the ¹³⁷Cs inventory is reflected in the 265 variation in the ¹³⁷Cs concentration, the physico-chemical properties of water/sediment 266 might have determined the ¹³⁷Cs concentrations; it is worth examining these relationships. 267 Table 2 lists the correlation coefficients between the 137 Cs concentrations or apparent K_d 268 269 with representative physico-chemical parameters. We could not find any attributes that explained the variation in the ¹³⁷Cs concentrations and distribution coefficients in all 270 271 rivers. Among the relationships, the correlation coefficients between the EC and Cs_{dis} 272 were positive for all three events in the Niida River but were negative for all events in the Takase River. Although SSA was believed to control the ¹³⁷Cs concentration in SS (e.g., 273 274 He and Walling, 1996), our results disagreed with those findings. Similar to the Cs_{dis}, the ¹³⁷Cs concentration in SS could not be explained by a single physico-chemical property, 275 276 even one that was significant for low-flow conditions. It is reasonable to postulate that 277 the temporal variation in these physico-chemical properties also varied with the 278 catchment characteristics, and the complicated hydrological processes apparently hindered the synchronicity of the ¹³⁷Cs concentrations with any single property. These 279 280 results suggest importance of consideration of the site-specific hydrological processes and sediment dynamics of river catchments. 281

To discuss the role of catchment land use, we investigated the relationship between the ¹³⁷Cs concentration in SS and δ^{15} N, as an index of the contribution of sediment sources based on data in Laceby et al. (2016a) (Figure 5). Table S3 shows all data of the δ^{13} C and δ^{15} N. Although both δ^{13} C and δ^{15} N were measured, we decided to

use δ^{15} N here because there was a negative shift in the δ^{13} C of the sediment source sample, 286 as described by Laceby et al. (2016a) (Figure S1). The ¹³⁷Cs concentration tended to be 287 increase with decreasing δ^{15} N concentration, although this correlation was not statistically 288 289 significant. This relationship suggests that the high contribution of forested area increases the ¹³⁷Cs concentration in SS based on a comparison of the mean values of δ^{15} N in the 290 source area. This concurs with plot-scale ¹³⁷Cs wash-off observations (e.g., Yoshimura et 291 al., 2015b; Wakiyama et al., 2019), showing 1.4–3 times higher ¹³⁷Cs concentrations in 292 293 eroded sediment in forested areas compared with farmland. We speculate that the increased SS load from forested areas increased the ¹³⁷Cs concentration in SS. 294

295 The increased contribution from forested areas could be explained by a variable 296 source area concept; i.e., intensive rainfall results in an expanded contribution area of 297 runoff water (e.g., Hewlett and Hibbert, 1967). Previous studies of global fallout ¹³⁷Cs 298 showed that soils in upslope areas were barely eroded and were expected to maintain high ¹³⁷Cs concentrations (e.g., Fukuyama et al., 2001; Wakiyama et al., 2010). However, the 299 300 expanded runoff area during a rainfall event washed surface soil downstream, resulting in an increased ¹³⁷Cs concentration in SS. Future numerical studies of these hydrological 301 processes will improve our understanding of ¹³⁷Cs dynamics. 302

By contrast, no such relationships were clear for the Niida and Takase Rivers for JUL20-1 and JUL20-2. For JUL20-1, a wide range of δ^{15} N and stable ¹³⁷Cs concentrations were observed in the Niida and Takase Rivers. As the rainfall erosivity was low compared with the other two events, little severe soil erosion was expected. Plausibly, the riverbed or riverbank was the main sediment source during the events. The relationships in the Niida and Takase Rivers in JUL20-2 were not straightforward. Both rivers had a low δ^{15} N, close to 0‰, with a low ¹³⁷Cs concentration, unlike those during SEP19. These two values infer that forest in the midstream area with a low ¹³⁷Cs inventory, as shown in Figure 1, was the dominant sediment source during sampling. This is indeed the case for the Takase River; sharp decreases in Cs_{ss} of two samples after peak discharge were found in JUL20-2 as shown in Figure 3.

In contrast to the other two rivers, high stable values of δ^{15} N were found in the Ukedo River in both JUL20-1 and JUL20-2, with little variation in Cs_{ss}. We postulate that the Ogaki Dam trapped SS from the highly contaminated upstream area, and that the main sediment source was cultivated, decontaminated land downstream, in these events. Our stable isotope signature analyses demonstrated that the spatial distribution of ¹³⁷Cs and land use composition in the catchment control the variation in the ¹³⁷Cs concentration in SS during high-flow events.

321

322 **3.3.** ¹³⁷Cs flux from rivers and desorption in the ocean

Based on the ¹³⁷Cs concentrations and ¹³⁷Cs desorption experiment, we estimated the ¹³⁷Cs flux, including ¹³⁷Cs desorption, from the river catchments (Table 3). The total ¹³⁷Cs flux ranged from 0.325 to 19.0 GBq, or 0.00014 to 0.010% of the total ¹³⁷Cs deposited in the catchments. The particulate ¹³⁷Cs flux ranged from 0.32 to 18.8 GBq, and the dissolved ¹³⁷Cs flux ranged from 0.061 to 0.273 GBq. The total ¹³⁷Cs flux accounted for 0.001–0.034% of the total ¹³⁷Cs in the catchments. The Niida River exported the most ¹³⁷Cs, followed by the Takase River and then Ukedo River. The

percentage of the total ¹³⁷Cs flux to the total ¹³⁷Cs deposited in the Ukedo River catchment 330 331 was one order of magnitude lower than those in the other two rivers. The Ogaki Dam reservoir appeared to mitigate the ¹³⁷Cs flux by trapping discharged sediments. Nakanishi 332 333 et al. (2021) found a 14 times higher sediment discharge from the Takase River than from 334 the Ukedo River during Typhoons Hagibis and Bualoi in 2019. Hayashi and Tsuji (2020) reported ¹³⁷Cs storage rates in the dam reservoir of 84–95% based on the difference in 335 observed ¹³⁷Cs inflow and outflow for the Matsugabo Dam reservoir in the Uda River 336 catchment. The particulate ¹³⁷Cs flux of one magnitude lower in the Ukedo River concurs 337 with their results. In comparison, the magnitude of the dissolved ¹³⁷Cs flux was similar to 338 those in the other two rivers. Funaki et al. (2020) estimated the dissolved ¹³⁷Cs flux from 339 the Ogaki Dam reservoir to be $1.0-2.2 \times 10^{10}$ Bq per year. In terms of the ratio of the 340 341 rainfall amount during these events to the annual rainfall, values of 0.18 and 0.22 GBq 342 are reasonable. The Ogaki Dam reservoir likely contained trapped SS at the bottom and mitigated sediment discharge and particulate ¹³⁷Cs during high-flow events. 343

344 The particulate ¹³⁷Cs flux clearly increased with the event R-factor, rather than 345 with the rainfall amount, for all three catchments (Figure 6). Although statistical 346 significance could not be evaluated because of insufficient observations, the both the 347 particulate and dissolved ¹³⁷Cs fluxes were more proportional to the R-factor than to the catchment mean precipitation. When examining the sensitivity of the particulate ¹³⁷Cs 348 349 flux to the R-factor using the slope of the regression, the Niida River showed a relatively sharp increase in the particulate ¹³⁷Cs flux, followed by the Takase River and then Ukedo 350 River. The greater sensitivity of the Niida River could be attributed to the smaller ratio of 351

forest cover in the catchment. Based on soil erosion observations, Wakiyama et al. (2019) reported a 3–50 times higher ¹³⁷Cs discharge from farmland than forest. Taniguchi et al. (2019) indicated that a high ratio of forested area in a catchment resulted in a smaller ¹³⁷Cs flux. As more than 95% of the ¹³⁷Cs was transported in a particulate form, using the R-factor of other erosivity parameters yields more accurate estimates compared with using the rainfall amount. The low sensitivity of the Ukedo River is due to the effect of the Ogaki Dam, as discussed above.

The above datasets of the particulate ¹³⁷Cs flux enabled us to estimate the potential 359 magnitude of the desorption of ¹³⁷Cs from SS, as demonstrated by Takata et al. (2021). 360 Table 4 shows the results for sea water extraction for ¹³⁷Cs desorption and the sequential 361 362 extraction for ¹³⁷Cs speciation. The desorption percentage was slightly higher in the 30-363 minute experiment than in the 1-day experiment, ranging from 2.8% to 6.6%. The 364 magnitude of 137 Cs desorption also agreed with that reported by Takata et al. (2020, 2021). The values for the speciation of ¹³⁷Cs were higher than those reported by Tsukada and 365 366 Ohse (2016): 0.9–1.5% for the exchangeable faction and 1.8–4.1% for the organically bound ¹³⁷Cs fraction in SS under low-flow conditions. The difference might be because 367 368 the SS samples were derived mainly from forest area, as discussed for Figure 5. The 369 desorption ratio appeared to be high when the proportion of the ion-exchange fraction 370 was high, although the correlation was not significant. The slope of the approximate linear 371 equation between the results of the 1-day desorption experiment and the ion-exchange 372 fraction was close to 1, suggesting that the ion-exchange fraction was desorbed in the 1day desorption experiment. These results confirmed that ¹³⁷Cs in the exchangeable 373

fractions is desorbed in the ocean and revealed the magnitude of ¹³⁷Cs desorption from
SS.

By multiplying the percentage of ¹³⁷Cs desorption by the particulate ¹³⁷Cs flux, 376 the estimated potential range of ¹³⁷Cs desorbed from SS in the ocean was 0.022–0.57 GBq 377 378 (Table 5). The ratio of desorbed 137 Cs to dissolved 137 Cs ranged from 0.12 to 6.2, and the ratios during SEP19 were the highest for all three rivers. The large particulate ¹³⁷Cs flux 379 380 during this intensive rainfall event resulted in a relative increase in the amount of desorbed ¹³⁷Cs. In the case of the Abukuma River after Typhoon Hagibis, the ratio of 381 desorbed ¹³⁷Cs to dissolved ¹³⁷Cs reached 130 due to the considerable particulate ¹³⁷Cs 382 flux (Takata et al., 2021). Intensive rainfall results in large amount of desorption of ¹³⁷Cs 383 384 from SS, which may increase the dissolved ¹³⁷Cs concentration in near-shore seawater. 385 These results underline the importance of particulate ¹³⁷Cs dynamics for both terrestrial and oceanic environments. 386

387

388 **4. Conclusion**

We examined the riverine ¹³⁷Cs dynamics during high-flow events and their influence on ocean environments. The temporal variation in the ¹³⁷Cs concentration differed according to the event, even in the same river catchment, and appeared to reflect the spatial distribution of the ¹³⁷Cs inventory in the catchments, rather than the influence of the dynamics of the physico-chemical properties of water and SS. The relationship between δ^{15} N and the ¹³⁷Cs concentration in SS suggested that SS discharged from forested areas during intensive rainfall events increased the ¹³⁷Cs concentration in SS. From the results, we postulate that the spatial distribution of the ¹³⁷Cs inventory and land use composition in catchments control the variation in riverine ¹³⁷Cs concentrations during high-flow events in relatively large river catchments with different land uses.

399 The differences in the land use composition of the catchments were also reflected in the ¹³⁷Cs fluxes. The sensitivity of the particulate ¹³⁷Cs flux to the rainfall erosivity was 400 401 low in a highly forested catchment. Our results demonstrated that a dam reservoir mitigated ¹³⁷Cs exportation via sediment trapping. The estimated percentage of desorbed 402 ¹³⁷Cs relative to particulate ¹³⁷Cs was 2–6% based on desorption experiments. These 403 values roughly agreed with the percentage of 137 Cs in the exchange fraction in SS. The 404 amount of ¹³⁷Cs desorbed in the ocean depended on the particulate ¹³⁷Cs flux and 405 exceeded the dissolved ¹³⁷Cs flux from terrestrials during intensive rainfall events. Hence, 406 407 the particulate ¹³⁷Cs dynamics are important not only for ¹³⁷Cs redistribution in terrestrial 408 areas but also for ¹³⁷Cs diffusion in the ocean. Further comparative studies of various 409 high-flow events in different catchments, and numerical simulations based on such 410 observations, will improve our understanding of riverine ¹³⁷Cs dynamics.

411

412 Acknowledgement

This research was funded by the Japan Society for the Promotion of Science, Grant-inaid for Scientific Researches (B) (18H03389), and (21H03574). Dr. Kenji Nanba and Dr.
Toshihiro Wada supported the measurements of stable isotope compositions of carbon
and nitrogen.

417

418 **Reference**

- 419 Abril, J.M., Fraga, E.F. 1996. Some physical and chemical features of variability of k_d 420 distribution coefficients for radionuclides. *J. Environ. Radioact.* **30**, 253-270.
- 421 Asano, Y., Uchida, T., Gomi, T., Mizugaki, S., Hiraoka, M., Katsuyama, M., Niwa, S.,
- 422 Yokoo, Y. 2018a. Effects of Spatial Scales on Runoff / Sediment Transport in
- 423 Mountain Catchments (1) A Review of Field Observations on Catchment Area and
- 424 Properties. J. Japan Soc. Hydrol. and Water Resour. **31**, 219–231. (in Japanese with
- 425 English abstract). DOI: 10.3178/jjshwr.31.219.
- 426 Asano, Y., Uchida, T., Katsuyama, M., Hiraoka, M., Mizugaki, S., Gomi, T., Niwa, S.,
- 427 Yokoo, Y. 2018b. Effects of Spatial Scales on Runoff / Sediment Transport in
- Mountain Catchments (2) -Results from Intensively Studied Catchments. J. Japan
 Soc. Hydrol. and Water Resour., 31, 232-244. (in Japanese with English abstract).
- 430 Evrard, O., Leceby, J.P., Lepage, H., Onda, Y., Cerdan, O., Aylault, S. 2015.
- 431 Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima
 432 Nuclear Power Plant accident: A review. *J. Environ. Radioact.* 148, 92-110.
- 433 Fukuyama, T., Onda, Y., Takenaka, C., Yamamot, T. 2001. Estimation of soil erosion
- 434 using a radionuclide in reservoir sediment and forest soil. J. JSECE, 54, 4-11. (in
- 435 Japanese with English abstract)
- 436 Funaki, H., Sakuma, K., Nakanishi, T., Yoshimura, K., Katengeza, W.E. 2020. Reservoir
- 437 sediments as a long-term source of dissolved radiocaesium in water system; a mass
- 438 balance case study of an artificial reservoir in Fukushima, Japan. *Sci. Total. Environ.*
- **743**, 140668.

- 440 Hashimoto, T., Yokoyama, K., Kohno, M., Ohno, A. 2015. Transport of radiocesium
- 441 depending on the particle size of suspended sediment during flood discharge. J. Jpn
- 442 Soc Civil Engineers, Ser. B1 (Hydraulic Engineering),71, I_1195-I_1200. (in
 443 Japanese with English abstract).
- Hayashi, S., Tsuji, H., Ito, S., Nishikiori, T., Yasutaka, T. 2016. Export of radioactive
 cesium in an extreme flooding event by typhoon Etau. *J. Jpn Soc Civil Engineers*,
 Ser. G (Environmental Research), **72**, III_37-III_43. (in Japanese with English
 abstract).
- Hayashi, S., Tsuji, H., 2020. Role and effect of a dam on migration of radioactive cesium
 in a river catchment after the Fukushima Daiichi Nuclear Power Plant accident. *Global Environ. Res.* 24, 105-113.
- He, Q and Walling, D.E., 1996. Interpreting particle size effects in the adsorption of ¹³⁷Cs
 and unsupported ²¹⁰Pb by mineral soils and sediments. *J. Environ. Radioact.* **30**, 117-

453 137.

- Hewlett, J.D. and Hibbert, A.R. 1967: Factors affecting the response of small watersheds
 to precipitation in humid areas. In Sopper, W.E. and Lull, H.W., editors, Forest
 hydrology, New York: Pergamon Press, 275–90.
- Huon, S., Hayashi, S., Laceby, J.P., Tsuji, H., Onda, Y., Evrard, E. 2018. Source
 dynamics of radiocesium-contaminated particulate matter deposited in an
 agricultural water reservoir after the Fukushima nuclear accident. *Sci Total Environ*,
 612, 1079-1090.

461 IAEA. 2020, Environmental transfer of radionuclides in Japan following the accident at
462 the Fukushima Daiichi Nuclear Power Plant. IAEA-TECDOC-1927

- 463 Iwagami, S., Tsujimura, M., Onda, Y., Nishino, M., Konuma, R., Abe, Y., Hada., Pun, I.,
- 464 Sakaguchi, A., Kato, H., Yamamoto, M., Miyata, Y., Igarashi, Y., 2017. Temporal
- 465 changes in dissolved ¹³⁷Cs concentrations in groundwater and stream water in
 466 Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. *J. Environ.*467 *Radioact.* 166, 458-465.
- 468 Kamidaira, Y., Uchiyama, Y., Kawamura, H., Kobayashi, T. Otosaka, Y. 2021. A
- 469 modeling study on the oceanic dispersion and sedimentation of radionuclides off the
 470 coast of Fukushima. *J. Environ. Radioact.* 238-239, 10672.
- Kinouchi, T., Yoshimura, K., Omata, T. 2015. Modeling radiocesium transport from a
 river catchment based on a physically-based distributed hydrological and sediment
 erosion model. *J. Environ. Radioact.* 139, 407-415.
- 474 Konoplev, A., Golosov, V., Laptev, G., Nanba, K., Onda, Y., Takase, T., Wakiyama, Y.,
- 475 Yoshimura, K., 2016. Behavior of accidentally released radiocesium in soil-water
- 476 environment: Looking at Fukushima from a Chernobyl perspective. J. Environ.
- 477 *Radioact.* **151**, 568-578.
- 478 Konoplev, A., Golosov, V., Wakiyama, Y., Takase, T., Yoschenko, V., Yoshihara, T.,
- 479 Parebyuk, O., Cresswell, A., Ivanov, M., Carradine, M., Nanba, K., Onda, Y. 2018.
- 480 Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and
- 481 lateral migration. J. Environ. Radioact. 186, 23-33.

- 482 Konoplev, A., Wakiyama, Y., Wada, T., Udy, C., Kanivets, V., Ivanov, M.M.,
- 483 Komissarov, M., Takase, T., Goto, A., Nanba, K. 2021. Radiocesium distribution
- 484 and mid-term dynamics in the ponds of the Fukushima Dai-ichi nuclear power plant
- 485 exclusion zone in 2015–2019, *Chemosphere*, 265, 129058.
- 486 Laceby, JP., Huon, S., Onda, Y., Vaury, V., Evrard, O. 2016a. Do forests represent a
 487 long-term source of contaminated particulate matter in the Fukushima Prefecture?
 488 *J. Environ. Manage.*, 183, 742-753.
- 489 Laceby, JP., Chartini, C., Evrard, O., Onda, Y., Garcia-Sanchez, L., Cerdan, O. 2016b.
- 490 Rainfall erosivity in catchments contaminated with fallout from the Fukushima
 491 Daiichi nuclear power plant accident. *Hydrol. Earth Syst. Sci.*, 20, 2467–2482.
- 492 Murakami, M., Shibayama, N., Sueki, K., Mouri, G., O, H., Nomura, M., Koibuchi, Y.,
- 493 Oki, T. 2016. Occurrence and partition ratios of radiocesium in an urban river during
- dry and wet weather after the 2011 nuclear accident in Fukushima. *Water Res.* 92,
 87-93.
- 496 Nakanishi, T., Ohyama, T., Hagiwara, H., Sakuma, K. 2021. Impact of extreme typhoon
- 497 events on the fluvial discharge of particulate radiocesium in Fukushima Prefecture.
- 498 In: Lee, J.L.; Suh, K.-S.; Lee, B.; Shin, S., and Lee, J. (eds.), Crisis and Integrated
- 499 Management for Coastal and Marine Safety. Journal of Coastal Research, Special
- 500 Issue No. 114, pp. 310–314. Coconut Creek (Florida), ISSN 0749-0208.
- 501 Naulier, M., Eyrolle-Boyer, F., Eyrolle-Boyer, P., Métivier, J.M. 2017. Particulate
- 502 organic matter in rivers of Fukushima: An unexpected carrier phase for radiocesiums.
- 503 Sci. Total Environ. **579**, 1560-1571.

504	Sakuma, K., Kitamura, A., Malins, A., Kurikami, H., Machida, M., Mori, K., Tada, K.,
505	Kobayashi, T., Tawara, Y., Tosaka, H. 2017. Characteristics of radio-cesium
506	transport and discharge between different basins near to the Fukushima Dai-ichi
507	Nuclear Power Plant after heavy rainfall events, J. Environ. Radioact. 169-170, 137-
508	150.

- Sakuma, K., Nakanishi, T., Yoshimura, K., Kurikami, H., Nanba, K., Zheleznyak, M.
 2019. A modeling approach to estimate the ¹³⁷Cs discharge in rivers from
 immediately after the Fukushima accident until 2017. *J. Environ. Radioact.* 208-209,
 106041.
- Shinomiya, Y., Tamai, K., Kobayashi, M., Ohnuki, Y., Shimizu, T., Iida, S., Nobuhiro,
 T., Sawano, S., Tsuboyama, Y., Hiruta, T. 2014. Radioactive cesium discharge in
 stream water from a small watershed in forested headwaters during a typhoon flood
 event. *Soil Sci. Plant Nutr.* 60, 765-771.
- 517 Takata, H., Hasegawa, K., Oikawa, S., Kudo, N., Ikenoue, T., Isono, S. R., Kusakabe, M.,

2015. Remobilization of radiocesium on riverine particles in seawater: The
contribution of desorption to the export flux to the marine environment. *Marine Chemistry*. 176, 51-63.

- Takata, H., Aono, T., Inoue, M., Kaeriyama, H., Suzuki, S., Tsuruta, T., Wada, T.,
 Wakiyama, Y. 2020. Suspended particle-water interactions increase dissolved ¹³⁷Cs
 activities in the nearshore seawater during typhoon Hagibis. *Environ. Sci. Technol.*,
- **524 54**, 10678–10687.

525	Takata, H., Wakiyama, Y., Niida, T., Igarashi, Y., Konoplev, A., Inatomi, N. 2021.
526	Importance of desorption process from Abukuma River's suspended particles in
527	increasing dissolved 137Cs in coastal water during river-flood caused by typhoons.
528	Chemosphere, 281 , 130751.
529	Taniguchi, K. Onda, Y., Smith, H.G., Blake, W.H,. Yoshimura, K., Yamashiki, Y.,
530	Kuramoto, T., Saito, K. 2019. Transport and redistribution of radiocaesium in
531	Fukushima fallout through rivers. Environ. Sci. Technol., 53, 12339-12347.
532	Tsuji, H., Nishikiori, T., Yasutaka, T., Watanabe, M., Ito, S., Hayashi, S., 2016. Behavior
533	of dissolved radiocesium in river water in a forested watershed in Fukushima
534	Prefecture. J. Geophys. Res. Biogeoscience. 121, 2588-2599.
535	Tsuji, H., Ishii, Y., Shin, M., Taniguchi, K., Arai, H., Kurihara, M., Yasutaka, T.,
536	Kuramoto, T., Nakanishi, T., Lee, S., Shinano, T., Onda, Y., Hayashi, S. 2019.
537	Factors controlling dissolved ¹³⁷ Cs concentrations in east Japanese Rivers. Sci.
538	Total Environ., 697, 134093.
539	Tsukada, H., Ohse, K. 2016. Concentration of radiocaesium in rice and irrigation water,
540	and soil management practices in Oguni, Date, Fukushima. Integrated
541	Environmental Assessment and Management. 12, 659-661.
542	Tsumune, D., Tsubono, T., Misumi, K., Tateda, y., Toyoda, y., Onda, Y., Aoyama, M.
543	2020. Impacts of direct release and river discharge on oceanic 137Cs derived from
544	the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 214-

, 106173

546	Ueda, S., Hasegawa, H., Kakiuchi, H., Akata, N., Ohtsuka, Y., Hisamatsu, S. 2013.
547	Fluvial discharges of radiocesium from watersheds contaminated by the Fukushima
548	Dai-ichi Nuclear Power Plant accident, Japan. J. Environ. Radioact. 118, 96–104.
549	United States Department Agriculture, 2013. Rainfall Intensity Summarization Tool
550	(RIST), United States Department of Agriculture (USDA), Agriculture Research
551	Service, National Sedimentation Laboratory, Oxford, Mississippi, Version 3.88.
552	https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-
553	laboratory/watershed-physical-processes-research/research/rist/rist-rainfall-
554	intensity-summarization-tool/, accessed 26th October 2021.
555	Wakiyama, Y., Onda, Y., Mizugaki, S., Asai, H., Hiramatsu, S. 2010. Soil erosion rates
556	on forested mountain hillslopes estimated using ¹³⁷ Cs and ²¹⁰ Pbex. Geoderma, 159 ,
557	39-52.
558	Wakiyama, Y., Onda Y., Yoshimura K., Igarashi Y., Kato H., 2019. Land use types
559	control solid wash-off rate and entrainment coefficient of Fukushima-derived ¹³⁷ Cs
560	and their time dependence. J. Environ. Radioact., 210, 105990.
561	Wakiyama, Y., Konoplev, A., Thoa, N., Niida, T., Tsukada, H., Takase, T., Nanba, K.,
562	Golosov, V., Zheleznyak M. in press. Temporal variations in particulate and
563	dissolved 137Cs activity concentrations in the Abukuma River during two high-flow
564	events in 2018. In: Nanba, K., Konoplev, A., Wada, T. (Eds.), Behavior of
565	radionuclides in the environment III: Fukushima, Springer Nature Singapore Pte.
566	Ltd., Singapore.

26

567	Yamashiki, Y., Onda, Y., Smith, H.G., Blake, W.H., Wakahara, T., Igarashi, Y.,									
568	Matsuura, Y., Yoshimura, K., 2014. Initial flux of sediment-associated radiocesium									
569	to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power									
570	Plant. Sci. Rep. 4, 3714.									
571	Yoshimura, K., Onda, Y., Sakaguchi, A., Yamamoto, M., Matsuura, Y., 2015a. An									
572	extensive study of the concentrations of particulate/dissolved radiocaesium derived									
573	from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems									
574	and their relationship with catchment inventory. J. Environ. Radioact. 139, 370–378.									
575	Yoshimura, K., Onda, Y., Kato, H. 2015b. Evaluation of radiocaesium wash-off by soil									
576	erosion from various land uses using USLE plots. J. Environ. Radioact. 139, 362-									
577	369.									
578										
579	Captions									
580	Table 1. Catchment mean rainfall and event R-factor.									
581	Table 2. Correlations of the 137 Cs concentration in suspended solids (Cs _{ss}), dissolved 137 Cs									
582	concentration (Cs_{dis}), and apparent distribution coefficient (K_d) with									
583	representative physico-chemical properties.									
584	Table 3. The suspended solid, particulate, dissolved, and total ¹³⁷ Cs fluxes									
585	Table 4. Results of desorption experiment and sequential extraction									
586	Table 5. Estimated amount of ¹³⁷ Cs desorbed from suspended solids in the ocean and the									

587 ratio of desorbed 137 Cs to dissolved 137 Cs.

Figure 1. Spatial distribution of the ¹³⁷Cs inventory, land use, and slope gradient in the study catchments. The spatial distribution of the ¹³⁷Cs inventory is based on the fourth airborne survey by MEXT (2011). The Thiessen territory was created based on the coordination of Japan Meteorological Agency weather stations.

- Figure 2. Sampling times (vertical dashed lines) of river water along with the hyetographs
 and hydrographs of the observed events. The hyetographs show the catchment
 mean rainfall amounts based on the Thiessen territory in Figure 1. The hydrograph
 shows the 10 minutes specific water discharge (SWD).
- Figure 3. Temporal variations in the suspended solid concentration (SSC), 137 Cs concentration in suspended solids (Cs_{ss}), and dissolved 137 Cs concentration (Cs_{dis}) during the events.
- 599 Figure 4. Scatterplots of the normalized ¹³⁷Cs concentration in suspended sediment (normalized Csss), normalized dissolved ¹³⁷Cs concentration (normalized Csdis), 600 601 and K_d versus the logarithms of the specific water discharge (SWD) and suspended solid concentration (SSC). The normalized Cs_{ss} and normalized Cs_{dis} 602 were obtained by dividing Cs_{ss} and Cs_{dis} by Catchment mean ¹³⁷Cs inventory, 603 604 respectively. The specific water discharge (SWD) every 10 minutes during 605 sampling was multiplied by 6 to determine the hourly specific water discharge 606 following Tsuji et al. (2016). Broken lines indicate significant correlations.
- Figure 5. Relationship between the $\delta^{15}N$ and ^{137}Cs concentrations in suspended solids (Cs_{ss}). Broken lines represent the mean concentration of $\delta^{15}N$ in soil (< 2 mm), subsoil, cultivated land, and forest, according to Laceby et al. (2016a)

28

610 Figure 6. Scatterplots of the percentages of particulate and dissolved ¹³⁷Cs fluxes relative

- 611 to the total ¹³⁷Cs in catchments, and the ratio of the particulate ¹³⁷Cs flux to the
- 612 total ¹³⁷Cs flux versus the catchment mean rainfall and event R-factor.
- 613

614 **Supplementary materials**

- 615 Table S1. Characteristics of the river catchments
- 616 Table S2. Data of suspended solid concentration (SSC), ¹³⁷Cs concentration in uspended
- 617 solids (Cs_{ss}) , dissolved ¹³⁷Cs concentration (Cs_{dis}) , apparent distribution 618 coefficient (K_d) .
- 619 Table S3. Data of δ^{13} C and δ^{15} N.
- Figure S1. Relationship between δ^{13} C and δ^{15} N in suspended solids and soils in the sediment souce area. The values for soils were derived from Lacyby et al. (2016a)

	~ .		
Table 1.	Catchment mear	i rainfall and	event R-factor

		Weather	Weather station								
		Soma	Iitate	Haramachi	Tsushima	Namie	Kawauchi	Funehiki	Niida River	Ukedo River	Takase River
Ratio to entire	Niida River	1	68	17	14	0	0	0			
catchment (%)	Ukedo River	0	0	0	68	32	0	0			
	Takase River	0	0	0	41	26	1	32			
Total rainfall	SEP19	27.5	90	34	104.5	73	118	83	81.8	94.3	100.4
(mm)	JUL20-1	134	81	102.5	62	67.5	49.5	63.5	58.9	52.4	49.9
	JUL20-2	141	94.5	83.5	97.5	83	97.5	112	93.4	92.8	93.9
Total R-factor	SEP19	57	628	90	1190	466	1109	517	607	956	970
(MJ mm ha ⁻¹ hr ⁻¹)	JUL20-1	114	51	136	33	61	34	34	64	42	41
	JUL20-2	385	211	148	316	187	594	350	216	274	371

		¹³⁷ Cs concentration in suspended solid (Cs _{ss}) (Bq kg ⁻¹)					Dissolved ¹³⁷ Cs concentration (Cs _{dis}) (mBq L ⁻¹)				Apparent distribution coefficient K_d (L kg ⁻¹)						
		SSA (m ² g ⁻¹)		TOC (%)		K+ (mg L-1)		DOC (mg L ⁻¹)		EC (μS cm ⁻¹)		EC (μS cm ⁻¹)		TOC (%)		SSA (m ² g ⁻¹)	
		n	r	n	r	n	r	п	r	п	r	п	r	n	r	п	r
Niida River	SEP19	6	0.28	6	0.51	6	-0.14	6	0.85*	6	-0.91*	6	-0.46	6	0.49	6	-0.27
	JUL20-1	6	-0.74	6	-0.46	6	0.41	6	0.37	6	-0.27	6	-0.40	5	-0.63	6	-0.79
	JUL20-2	7	-0.39	7	0.77*	8	-0.15	8	0.17	8	-0.75*	8	0.32	7	0.34	8	0.45
	Total	19	0.25	19	0.60**	20	0.41	20	0.69**	20	-0.74**	20	-0.11	18	0.47*	19	-0.04
Ukedo River	SEP19	6	0.25	5	0.99**	6	-0.51	6	0.72	6	-0.27	6	-0.68	5	0.78	6	-0.39
	JUL20-1	6	0.54	6	-0.87*	6	0.23	6	0.37	6	-0.08	6	-0.62	5	-0.78	6	-0.09
	JUL20-2	6	0.71	6	-0.88*	7	0.54	7	0.17	7	-0.30	7	0.12	6	-0.29	6	-0.12
	Total	18	-0.01	17	0.64*	19	0.66**	19	0.70**	19	0.19	19	-0.27	16	0.31	18	-0.14
Takase River	SEP19	6	-0.10	6	-0.05	6	-0.80	6	-0.81	6	0.92**	6	-0.49	6	-0.49	6	0.22
	JUL20-1	6	-0.79	6	0.50	6	0.08	6	-0.39	6	0.72	6	-0.19	6	-0.54	6	0.04
	JUL20-2	7	-0.04	7	0.27	7	-0.52	7	0.76*	7	0.77*	7	-0.32	6	-0.51	7	-0.16
	Total	19	0.15	19	0.29	19	-0.21	19	-0.18	19	0.62**	19	-0.46	18	0.08	19	0.36

Table 2. Correlations of the ¹³⁷Cs concentration in suspended solids (Cs_{ss}), dissolved ¹³⁷Cs concentration (Cs_{dis}), and apparent distribution coefficient (K_d) with representative physico-chemical properties

* *p* < 0.05

** *p* < 0.01

River	Event	Suspended solid flux (Gg)	Particulate ¹³⁷ Cs flux (GBq)	Dissolved ¹³⁷ Cs flux (GBq)	Total ¹³⁷ Cs flux (GBq)
Niida River	SEP19	2.12	18.8	0.137	19.0
	JUL20-1	0.135	1.50	0.074	1.57
	JUL20-2	1.69	6.04	0.086	6.13
Ukedo River	SEP19	0.113	5.39	0.273	5.67
	JUL20-1	0.017	0.227	0.098	0.325
	JUL20-2	0.019	0.269	0.096	0.365
Takase River	SEP19	2.17	13.1	0.096	13.2
	JUL20-1	0.193	0.655	0.061	0.717
	JUL20-2	0.558	2.24	0.079	2.32

Table 3. The suspended solid, particulate, dissolved, and total ¹³⁷Cs fluxes

	Sea water extract	tion (%)	Sequential extraction (%)						
Sample ID	30-min shaking	1-day shaking	Exchangeable fraction	Organic-bound fraction	Particle-bound fraction				
ND-SEP19-4	2.8	3.3	2.5	2.5	95.1				
UD-SEP19-3	5.1	6.6	5.0	5.5	89.6				
TS-SEP19-4	2.6	3.4	2.9	3.0	94.2				
ND-JUL20-2-5	2.1	2.8	2.6	3.2	94.3				
TS-JUL20-2-4	2.8	3.2	4.1	5.9	90.0				

Table 4. Results of desorption experiment and sequential extraction

	Desorbed ¹³⁷ Cs in o	cean (GBq)		Ratio of desorbed ¹³⁷ Cs to dissolved ¹³⁷ Cs					
Event	Niida River	Ukedo River	Takase River	Niida River	Ukedo River	Takase River			
SEP19	0.57	0.33	0.42	5.2	1.5	6.2			
JUL20-1	0.033	0.022	0.048	0.24	0.12	0.45			
JUL20-2	0.25	0.030	0.19	0.90	0.15	1.2			

Table 5. Estimated amount of ¹³⁷Cs desorbed from suspended solids in the ocean and the ratio of desorbed ¹³⁷Cs to dissolved ¹³⁷Cs.

Figure 1. Spatial distribution of the ¹³⁷Cs inventory, land use, and slope gradient in the study catchments. The spatial distribution of the ¹³⁷Cs inventory is based on the fourth airborne survey by MEXT (2011). The Thiessen territory was created based on the coordination of Japan Meteorological Agency weather stations.

Figure 2. Sampling times (vertical dashed lines) of river water along with the hyetographs and hydrographs of the observed events. The hyetographs show the catchment mean rainfall amounts based on the Thiessen territory in Figure 1. The hydrograph shows the 10 minutes specific water discharge (SWD)

Figure 3. Temporal variations in the suspended solid concentration (SSC), 137 Cs concentration in suspended solids (Cs_{ss}), and dissolved 137 Cs concentration (Cs_{dis}) during the events.

Figure 4. Scatterplots of the normalized ¹³⁷Cs concentration in suspended sediment (normalized Cs_{ss}), normalized dissolved ¹³⁷Cs concentration (normalized Cs_{dis}), and apparent distribution coefficient (K_d) versus the logarithms of the specific water discharge and suspended solid concentration. The normalized Cs_{ss} and normalized Cs_{dis} were obtained by dividing Cs_{ss} and Cs_{dis} by Catchment mean ¹³⁷Cs inventory, respectively. The specific water discharge every 10 minutes during sampling was multiplied by 6 to determine the hourly specific water discharge following Tsuji et al. (2016). Broken lines indicate significant correlations.

Figure 5. Relationship between the $\delta^{15}N$ and ^{137}Cs concentrations in suspended solids (Cs_{ss}). Broken lines represent the mean concentration of $\delta^{15}N$ in soil (< 2 mm), subsoil, cultivated land, and forest, according to Laceby et al. (2016a)

Figure 6. Scatterplots of the percentages of particulate and dissolved ¹³⁷Cs fluxes relative to the total ¹³⁷Cs in catchments, and the ratio of the particulate ¹³⁷Cs flux to the total ¹³⁷Cs flux versus the catchment mean rainfall and event R-factor.

Supplementary Material Table S1

Click here to access/download **Supplementary Material** Table S1 Niida et al.xlsx Supplementary Material Table S2

Click here to access/download **Supplementary Material** Table S2 Niida et al.xlsx Supplementary Material Table S3

Click here to access/download **Supplementary Material** Table S3 Niida et al.xlsx Supplementary Material Figure S1

Click here to access/download **Supplementary Material** Figure S1 Niida et al.docx Author Contributions Statement

Takuya Niida: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Original Draft. **Yoshifumi Wakiyama:** Conceptualization, Formal analysis, Investigation, Writing - review & editing, Visualization. **Hyoe Takata:** Investigation, Writing - Review & Editing, Funding acquisition. **Keisuke Taniguchi:** Data curation, Writing - Review & Editing. **Honoka Kurosawa:** Investigation. **Kazuki Fujita:** Data curation, Resources. **Alexei Konoplev;** Writing - review & editing, Supervision, Funding acquisition