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VARIATIONS OF GRAPHS IN RIEMANNIAN
MANIFOLDS

AKINORI MATSUI

1 TENSION VECTORS AND VARIATION

In this paper, we study the variation of a graph embedded in a Riemannian
manifold. Let each edge of a graph have the property of springs on tension.
Suppose that a graph is embedded in a Riemannian manifold such that each
edge is geodesical. On this situation, we will introduce the notion of a tension
vector at each vertex of a graph and that of a tension Jacobi field on a graph.
If an expanded graph moves in the Euclidian space by the influence of tension,
then it moves to such direction that the sum of the lengths of its tension vectors.
Then we propose the following.
PROPOSAL : The sum of the lengths of tension vectors decreases if the graph
moves along to the tension Jacobi field.
If the ambient Riemannian manifold has negative curvature, this proposal is
true (Corollary 1.3), but this proposal is not always true. In Section 3, we
construct examples which are not satisfied with this proposal. In Section 1, we
formulate the variation formula of tension vectors. We prove this in Section 2.

Let G be a graph. For each edge a of G and a positive number ¢(a), we call
a homeomorphism ¢o : @ = [0, ¢(a)] the length function of a and we call ¢(@)
the length of . If, for each edge a of G, a length functions of a is chosen, we
call G a graph with length. For each vertex p and each edge a with p < a, we
define tpa : @ = [0, t(a)] by

tpa (Z) = ta(z) if ta(p) = 0 and tpa(Z) = t(@) = ta(z) if ta(p) = t(a).

We call tpe the length function of a from p. Let G be a graph with length and
M a Riemannian manifold. For a mapping f : G = M, we put fo = fo ot
where 1, is the length function of a. We call a mapping f : G — M to be
a smooth mapping , if, for each edge @, the mapping fa : 0,:(a)] = M is a

smooth mapping. We say f : G — M to be nondegenerated, if —at—a # 0.

Let f : G = M be a nondegenarate smooth mapping. For each vertex p and
each edge @ with p < o, we define fq : [0,:(a)] = M by foa(t) = foipm(t)

For each vertex p of G, we define the tension vector Ty(p) at p by

-1
Ty = Y (1 - |2 ) Oz o)

a>p




. 0fa|. . .
In the definition of T (p), the term Ofa is the ratio of expantion of an edge o.

ot
If 6—6];3 > 1, the edge a expands. If ’%’ < 1 an edge a contracts.

We say a section V' : G — f*T'M to be a vector field along to f, if, for each
edge o, the mapping V o3 : [0,u(a)] = (121)* f*TM is a smooth vector field
along to fu. Put Vo = V o1, For each vertex p and each edge a with p < a,
put Voo = Vorsl. We call F: (—¢,e) x G — M a variation of f: G — M if
F(0,z) = f(z). Let F : (—e,e) x G =& M be a variation of f. For each edge «,
we define Fy, : (—¢,¢) x [0,¢(a)] = M by Fu(s,t) = F(s,13'(t)). A variation
F is smooth, if, for each edge a of G, the map F, : (—¢,e) x [0,1(a)] = M
is smooth. And, for each vertex p and each edge a with p < o, we define
Fpa i (—€,€) x [0,0(a)] = M by Fpa(s,t) = F(s,1,4(t)). A vector field V along
to f is the variation vector field of F, if the following holds:
Va(t) = %(o,t) for 0 < £ < 1(a).

We say a nondegenerated map f : G — M to be geodesical if, for each edge
o, the map f, : [0,a,] = M is a geodesic.

Let f : G — M be geodesical. A vector field V : G — f*TM along to f is
said to be a Jacobi field, if, for each a, V, is a Jacobi field. We say a Jacobi
field V along to f to be the tension Jacobi field with fized points P if

_f0 (pe P)
V(p)‘{ Ti(p) (0 ¢ P).

We denote by T]{J the tension Jacobi field along to f with fixed points P. For a
smooth variation F : (—e,e) x G = M, put Fy(z) = F(s,z). f Fs : G — M is
nondegenerated, we put Tr(p)(s) = T'r, (p) for each vertex p of G. An alteration
of our proposal is the following:

9
ds

Y < Te(p), Tr(p) > <0.

s=0 2P

Then we need to calculate the left side of the above inequality. We have the
following:

THEOREM 1.1 Let G be a graph with length and M o Riemannian manifold. Let
f: G = M be geodesical and F' a smooth variation of f. Let V : G — f*TM
be a Jacobi field along to f with fized points P. Suppose that V is the variation
vector field of F. Then



3fa Ofa

>< Vai(Tf Yoor =5 rals

~1 o) afa afa b
) /0 < R(Va, W)—&?(Tf )a >

-1 (o)
7P
)/) <V%VQ,V§T(Tf)a>dt.

< Vaa_Va,

We devote the next section to prove Theorem 1.1. Putting V = TP w
immediately have the following:

COROLLARY 1.2 Let f : G — M be geodesical and F' a smooth variation of
f. Suppose that the tension Jacobi field T;J with fized points P is the variation
vector field of F.

Then
0
Bs | _ Z < Tr(p),Tr(p) >
pﬁP
afa - rP 6fot
——Zo(a) Bt < Ve (Ty )a,E—

T\ O e Oy 0fe
) | < R@D P>

-1

t(a)
s p = p
) fo <V (FF)arV g (TF)a > dt.
By Corollary 1.2, we have the following;:

COROLLARY 1.3 Let f : G = M be geodesical and F a variation of f. Suppose
that the tension Jacobi field fP with fized points P is the variation vector field
Ofa
ot
and that there erists a vertez p ¢ P such that Ty(p) #0.
Then 5

Os

of F. Suppose that M has a negative curvature and ' ’ > 1 for each edge o

3 <Tr(®), Telp) > <0.

s=0 pgp



PROOF Suppose that G is connected, because it is enough to give the proof
for each connected component. Suppose th~at there exists an edge o such that
Va(Tf)ayéO Then < Va(Tf)a,Va( P)o > > 0. By Lemma 1.2, imme-

dlately we have
3}

Os

Z<TF ), Tr(p) > < 0.
0

s=

Now suppose that V%(T;’)a = 0 for each edge a. If P # 0, than (TF), = 0 for
each vertex p. Then P = (), since there exists a vertex p such that Tf (p) £ 0.
Suppose that T¢(p) has the same direction to one of fp 2(0) a 8(]9‘; =(0),
for each p < a. Then, for p and a with p < «, there ex1sts a unique vector field

Vpa O G, such that
0 fpa 0 fpa
Voalr) = (1~‘ s ) Jox )

and Vg (Vo) = 0 for each edge f, where (Vya)g = Vpo 015" Note that TF =

2 arp Vpa, for each p. Then #V (G)TF = Y p Larp Vo Where V(G) is the sets
of vertices of G. Since Vo4 Vo =0forp, g -< a, it follows that 3 Zw_p =

2o 2p<a Voo = 0. Then TP = 0. This is contradiction. Then there ex1st a
vertex p and an edge o such that p < o and that T¢(p) has a different direction

from each of g’“ (0) and —af”“ (0). Then < R((TF)a 2 ‘9f @) 0 f"‘ (TF)a > <0.

By Lemma 1.2, we have

0
ds

Z<Tp (®),Tr(p) > < 0.

=0 2

g-e.d.

COROLLARY 1.4 Let f: G — R™ be geodesical and F' a variation of f. Suppose
that Suppose that the tension Jacobi field Tfp with fized points P is the variation

Ofa

vector field of F'.Suppose that ' > 1 for each edge o and that there exists a

vertez p ¢ P such that Ts(p) # O.Then
0

Os

> <Te(p),Tr(p) > <0.

s=0pgp
Proor By Corollary 1.2, immediately we have

0

). Z<TF ), Tr(p) ><0.




. 0
We will prove that — Z < Tr(p), Tr(p) >= 0 implies T¢(p) = 0 for

Os

s=0pgp
o
p ¢ P. Consequently, we have 55 Z < Tr(p), Tr(p) >< 0. Suppose that
3—0 pEP
0 _ - O0fa . OFfs =
5 Y < Tr(p),Tr(p) >= 0. Note that < R((TF)a, 2= ) 5 ,(TF)a

0. By Corollary 1.2, we have V%(Tf)a = 0. If P # 0, then Tf (p) = 0 for each
vertex p. Then T¢(p) = O for each vertex p ¢ P. Next suppose that P = (.
For any tangent vector V in R™, we denote by V; the vector which is parallelly
translated V' to the origin of R™. Then V} is determined independently on the

choice of pathes. Not that
-1
afpoz
0 =0
) ot ( )> 0 7

5 (-
)%w),

for each edge «, and
Then Z(Tf (p))o = 0. Since T%(p) are parallel to each other, we have Tf(p) = 0.

S - X ((1- %]

O fpa
ot

14 p @rp

g.e.d.

2 PRrROOF OF THEOREM 1.1

To prove Theorem 1.1, we need the following lemmas.

LEMMA 2.1 Let f : [a,b] = M be a geodesic. Let Y be a Jacobi field along to
f. Then

of b—t t—a
<Y’E>() <Y(a)’6t(a)>l7~_+<y(b)’ (b)> T
of _ of . of
PROOF Note that V%ézzoa'nd V%V%Y-—R(Y, 8t)6t
Then
82 of 8f
8t2<Y,at -<Va VaY,a
Bf of 8f
=< K( ’6t)8t ot

=0.



of

Th h Y,
en we have < *Be

> (t) is a linear function. Then

<t s w=<v@Yw> 1t v, Y

ot

g.e.d.

LEMMA 2.2 Let f : [a,b] = M be a geodesic. LetY be a Jacobi field along to f
and let V' be a vector field along to f. Then

of of

6t)8t V >dt

<VLY(0),V(b) > - <VaY(a)V(a)>——/ < R(Y,

a

b
+/a <V%Y,V%V>dt.

of.of

Bt g 2

PrOOF We have V 2VaY = ~R(Y, =

b b b
o}
/E<V§_‘Y,V>dt=</a<V%V%Y,V>dt+/z <\7%Y,V%V>dt.

Then we have the result.
PRrROOF OF THEOREM 1.1 Note that

OFpe OFpe
flco Bt~ Vil 85 VP
For each vertex p of G, we have
N |Ofpe | 0 fpa Ofpa
Vel _ Tr) _;p T "< V|, Ve 5 (0) > —52%(0)
3fpa
+>° ( (0)) Vgl Voo
arp
Note that the following facts:
1. ]6(;: == 60}; = | is constant, since fpq is geodesic.

at s 33f > is constant by Lemma, 2.1,

3. Tf(p):OforpeP.

2. <Vana,%>=<V V
ED



Then

0
?s:O%Z <TF(p) T
—Z<Va

p¢PpP

:Z<va% a
_Zlafa
+Z(1— Ofa)”

Since 58; < agz =, f’f (p) > is constant by Lemma, 2.1, for each a, it follows that

t(a)
Y < =g ;’(p)>=_/ 2 < 1), > a
2 o o

0fa
ot

TF (p), Ty (p) >

Tr(0),Tf (0) >

<V Va, 22 af“ >¥ < 8fp‘* 0), TF (p) >

p<o

)Z<Va N

O%Q,Tf(p) >.

= —a) < 22,V o (Tf)q >

By Lemma 2.2, for each edge «, we have

- (@) Ofa\0fa
2 < Vgl T @) >= [ < v, YU (i),
p=a

(a
- < Ve Va,Va(TF), > dt.
/0 2 2 (T5)

Then we have

o 1
— —Z<TF(P),TF(P) >
98 ls= ZPEP
Ofa|® 8fn py Ofa
=—;L(Ol) W <V%Va,'5—'>' (Tf)a7_>
Bfa| 7t [ 0fo\0fa p
#2050 [ < r0n, e ) >
-1 )
_Z(l_aai )/ <V o Vo, Vg (FF) > di.
(23 t D




3 EXAMPLES

In this section, we construct examples such that g——l < Tr(p), Tr(p) > > 0.
s .—.

Let K 3 be the graph defined by K; 3 = px{a, 8, ’)’} Here pand {e, 8, v} are
one point and three points, respectively. Let v : pxa = [0, L], 15 : pxf — [0,1],
and ¢y : pxy - [0,1], be the length functions such that o (p) = t5(p) = t,(p) =
0,ta(a) = L,15(8) = ! and ty(y) = I. Throughout this section, we use these
notations.

3.1 THE CASE OF R?
We define f : K; 3 — R? as follows:

L. fora = foi7':[0,L] = R? defined by [pea(t) = (%,0) .

2. fpp=1fo LEI :[0,1] & R? defined by fp.p(t) = (O, %) .

3. fp*—y = f o] L;l H [O, l] - R2 deﬁned by fp*'y(t) = (0,-—%> .

Then we have the following:

ProPOSITION 3.1 Let f : Ki3 — R? be as aboves. and F a variation of

f. Suppose that the tension Jacobi field Tf along to f with fized points P =
2(n-1
{a, 8,7} is the variation vector fieldof F. If m # 1, and (nl ) > -Ll- then

a
=| <Tr(p),Tr(p) > > 0.

33 s=0
2 fp*cx 10
PrOOF Let (z,y) be the coordinate of R*. Then we have —2=(0) = — _-l ,
m Oz (30,0)
afp*ﬁ - afp*'y _]; a _ ]. -m o
—=£20) = nayl(oo n (0) = n@yl and we have Tf(p) = 81:'(0,0)‘

Here T¢(p) 1s the tension vector at p. Then, for the tension Jacobi field T}’ , we
have the following:

(2F),.. 0=

(~'f)p*ﬁ t) = 1mml;t<9826,(0 £)
(~;J)p*'y )=1_—_”T_—T€5%|(0"%)'



Then

=] _m—l_a_
(VBBT 'f)p*a ) = mL Ori(L0)
=P _m~—1_3_
~P _m—l—a_
(v% f)p*'y - ml Oz (0,-%

By Corollary 1.2, for a variation F' tangent to the tension Jacobi field T;’ , we
have

0] 1
ER - 5 < Tr(p), Tr(p) >
e g3 m=l0 138 ,
=-1LIm" < mL 8z’ m0z>
_,3_m=18 18 ,
" < —7 ml 8z’ n oz

mlL dz’ ndz
"(1—”7’)/0 <%%l(ﬁ,o)’%%l(;ﬁ;,o) > db
(1—n)/l< m—ll(’il( )’—‘H—l_la%'(o,f)>dt
~(1—n)/ ml Bm %)’%%I(o,-%) > dt.

8|l 1 3 1\’ /2(n—-1) 1
Then we have EN o 3 < Tr(p), Tr(p) >= (1 - E) (——7—-— f) .
2n—-1) 1 a
— then —
I Al ™ N

Ifm #1and < Tr(p),Tr(p) > > 0.

g.ed

3.2 THE CASE OF §?
We define f: K; 3 —+ S? as follows:

w w
fora = fo13t 10,L] — S* defined by fpealt) = (1,0,0) cos ft +(0,-1,0) sin ft'
forg =fo0 451 :[0,1] = S® defined by fous(t) = (1,0,0)cos %t +(0,0,1) sin %t.
fory =10 L;‘ :[0,1] = S$? defined by fpuy(t) = (1,0,0) cos —?H— (0,0,~1)sin %t.

Here L,I,W and w are positive numbers. Then we have the following:



PROPOSITION 3.2 Let f : K1 3 — S be as aboves and F a variation of f.Suppose
that the tension Jacobi field Ty along to f with fived points P = {c, B,v} is the
variation vector field F. If sinw # 0, then

L rp) Tel) 5= (L 1) (-1 (1) Zomw
g SEFPLIRP) 2= AT L ] sinw )

Immediately, we have the following. Then we omit the proof.

0

0s

s=0

COROLLARY 3.3 Suppose that W # L,w > 1 and g <w <7

-1
w —Cosw 0
IfL 2= 1) ——=— ‘
7 >( (l 1) sin w ) then 85(0<TF(p)’TF(p)>>O

PROOF OF PROPOSITION 3.2

Since af’"“"(o) = = , .a_fl’ﬁ(o) _v 9 ,
ot L oy (1,0,0) ot I 0z (1,0,0)
and af”’"’ —=£7.00) = A , it follows that Ts(p) = (—E/— + 1) 9
L 0z|0,0) L by (1,0,0)
Put 7 = EL/_ — 1. For some £ > 0, we can define w : (—e,e)} — R such that
B
w(0) = w, and cosw = cos s7cosw.Then we have 8—2: =0.
§=0
We define a variation F : (—¢,e) X K13 — S? of f as follows:
Fpua(s,t) =(cos sT,—sin s7, 0} cos ; Ty
. . W —sT
+ (—sinsT, — cos s7,0) sin T t

. w
Fp.a(s,1) =(cos s7,—sins7,0) cos —l-t

sin®sTcosw sinsTcossTcosw sinw) . @ "
— — —— | sin —
sinw sin " sin W

l

W
Fpery(s,t) =(cos s7,—sin s7,0) cos —l—t

sin? sTCosw Sin ST cOSSTCOSW  sinw sin i, s
sinw sinw ’ sind ’

)

Then Fpua(0,8) = fpea(t), Fpep(0,1) = foep(t), and Fpuy(0,%) = fpuy(t), hence
F is a variation of f.
Putting F,(z) = F(s,z), we have F; is a geodesical. Note that

Fp*a(s L)= fp*a(L = f(a)
Fpp(8,1) = fosp(l) = £(B)
Fpan(8,1) = fpen (1) = f(7)-

10



Since
OFpsa

0s

0Fz>*6
Os

aF,,*., )

0,0) =

it follow that tension Jacobi field T}“’ﬁ 7} i the variation vector field of F and
has fixed points {a, 3,v}. Moreover

OFpua W — st . 7] o)
5 |,_, == <— sin 8T 5~ = Cos 5T8—§>
% _w (sin2 srcoswi sin 87 cos STCOSlUB_ sinwﬁ)
ot |_o ! sinw Oz sin W 0y  sinw Oz
Qﬁﬂ _w (sm STCOSW 8 sin 87 cos sT cosw 6 _sinw 8)
ot |mo I sinw sin sin dz
Note that Q%’t:o = ——WLST ,and 8F”*ﬁ[t 0 ' ‘ ’8F”*7 —'%J

If € is sufficiently small, then, for s € (—¢,¢), we have

W — st sin sT cosw . 3] 8
TF(p)'_{( i3 _1) 2<'l——1> ——;‘]Tu_}*——} <—SIHST8—$'—COSST5§).

Note that 3_w
_ Os

= 0. Then we have

s=0
0 1 w 2 1 w —Cosw
85| _, 2 <Tr(P)Tr(e) >= (f - 1> (‘z +2(7-1) S ) :
q-e.d.
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Distributions on Graphes and Walks

Akinori MATSUI

1 Introduction and the statement of results

We generalize the notion of Hamiltonian graphs. Let G be a graph. Let V(G)
and F(G) be the set of all vertices of G and that of all edges of G ,respectively(c.f.
(1], [2])- We call a mapping D : V(G) = Z/nZ a mod n distribution on G.
A mapping ¢ : {0,1,2,...,m} = V(G) is said to be a walk with length m or
merely to be a walk if < o(i),0(1+1) > areedges in E(G)for ¢ =0,1,...,m—1.
A walk o is said to be closed if o(0) = o(m), where m is the length of 0.

Let o : {0,1,2,...,m} — V(G) be a walk on G. We define a distribution
D(o) : V(G) = Z/nZ on G by D(o)(v) = #{o7 (v)|c™!(v) < m — 1} mod
n. We take this definition of D(c), in order to avoid that 0,m € o~ 15(0) for
a closed walk o. We call D(o) the mod n distribution induced by o. A graph
G is Hamiltonian if there exists a walk o such that D(o)(v) = 1 in Z, for all
v in V(G). In this paper, we study mod n distribution for n > 1. Except for
bipartite graphs, we have the following:

Theorem 1 Let G be a connected graph and D e mod n distribution on G. Let
ug and uy be vertices of G. If n > 1 and G is not a bipartite graph, then there
erists a walk o on G such that o(0) = ug,0(m) = u1 and D(o) = D, wherem
is the length of o.

Let G be a connected bipartite graph, that is, the set V(G) of vertices of
G is divided into two part V5(G) and Vi(G), where vertices in same part are
not adjacent to each other. Let D be a mod n distribution on a connected
bipartite graph G. We set S(D) = 3, cv,(g) D), for k= 0,1, and S(D) =
So(D) — S1(D). Throughout this paper we use these notations. For bipartite
graphs, we have the following:

Theorem 2 Let D be a mod n distribution on o connected bipartite graph G
and n > 1. Let ug and u, be vertices of G. If ug and w, are in the same
part Vi (G) and S(D) = 0 mod n, then there exists a walk o such that ¢(0) =
ug,0(m) = wy, and D(o) = D, where m is the length of 0. If ux is in Vi(G)
for each k = 0,1, and S(D) =1 mod n, then there ezists a walk o such that
o(0) = up,0(m) = uy and D(o) = D, where m is the length of 0.

2 Proof of Theorems

To prove Theorems, we need the following:



Lemma 3 Let G be not a bipartite graph, and n > 1. Then, for any vertez u
in V(G), there exists a closed walk 7 such that 7(0) = u and

1 modn forv=u

D)) = {0 mod n  for v # u.

Lemma 4 Let G be a connected graph and D o mod n distribution. Ifn>1,
then, for anyug,uwy € V(G), there exists a walk T such that 7(0) = vy, T(m) = u,
and D(7)(v) = D(v) (v # u1), where m is the length of T.

We devote next section to prove Lemma 3 and Lemma 4. We introduce the
notation of connection of walks. Let 7 and 75 be walks with length m,; and m.,
respectively. Suppose that 7,(m,) = 72(0). We define a mod n distribution
T1#72 by
1 (k) 0<k<m
Tg(k - ml) my; <k <m; +mas.

T]_#Tz(k) = {

For a closed walk 7 and a positive integer p, we define pr by pr = ((p~ 1)7)#7.
By the definition, we immediately have the following. Then we omit the proof.

Lemma 5 For v € V(G), the following holds
D(r #7:)(v) = D(n)(v) + D(r2)(v) mod n.

Proof of Theorem 1

By Lemma 4, we have a walk 7 such that 71(0) = ug,71(m) = u; and
D(n)(v) = D(v) for v # u;, where m is the length of 7;. By Lemma 3, we have
a closed walk 73 such that 72(0) = u;, and

1 modn forv=wy
0 modn forv# u;.

D(m)(v) = {

We put ¢ = 1y #(D(u,) — D(11)(u1))72. By Lemmma 5, we have D(o)(v)
D(r1)(v) + (D(w) — D(m1)(u1))D(m2)(v) mod n. If v # uy, then D(o)(v)
D(n)(v) = D(v) mod n. If v = u, then D(0)(v) = D(n)(w;) + (D(uy)
D(11){u1))D(72)(u1) = D(u;) mod n. Then D(s) = D.

COoHE

g.e.d.

Note that Sx((D)(¢)) = #{¢ € Z|0 <i < m - 1,0(i) € Vi(G)} mod n.
Immediately we have the following. The we omit the proof.

Lemma 6 Let o be a walk with m length on a connected bipartite graph G. If
‘m is even, then S(D(c)) =0 (mod n). If m is odd and o(0) is in Vo(G), then
S(D(c)) =1 (mod n).

Proof of Theorem 2
By Lemma 4, there exists a walk o such that o(0) = uo, and o(m) = ui,
where m is the length of ¢ and that D(o)(v) = D(v) mod n for v # uy.
Suppose that uy and u, are in the same part Vi (G) for £ = 0 or 1. Then
m is even. Moreover suppose that $(D) = 0 mod n. By Lemma 6, we have
S(D(c)) = $(D) mod n. Then D(¢)(u1) = D(u;) mod n. Then D(0) = D.
Suppose that uy, is in Vi (G) for k = 0,1. Then m is odd. Moreover suppose
that S(D) =1 mod n. By Lemma 6, we have S(D(¢)) = S(D) mod n. Then

D(o)(u1) = D(u1) mod n. Then D(o) = D.
q.e.d.



3 Proof of Lemmas

Proof of Lemma 3

Note that G is not a bipartite graph. Then we can choose a closed walk p
such that p(0) = u and its length is odd. Let 2p + 1 be the length of p.
For k = 0,1,...,p, define walks 72* with length 1 by 7%*(0) = p(2k) and
725(1) p(2k +1). Then

D(r*)(w) = 1 modn forv=p(2k)
0 modn forwv# p(2k)

Fork = 1,2,...,p, define walks 72*~! with length 2n—1 by 72¢~1(2{) = p(2k—1)
and 724=1(2{ + 1) = p(2k) (¢ =0,1,...,n —1). Then

_ —1 modn for v=p(2k)
D(72k~1 =J"

) {o mod n for v # p(2k).
Set 7 = TO#TIH . L

Then

1 modn forv=p(0)

D(t)(v) = {0 mod n  for v # p(0).

q.e.d.

Lemma 7 Let G be a graph and a mod n distribution D on G. For any u €
V(G), there exists a closed walk T such that

_ JP(v) modn forv €Link(u;G)
b(r)w) = {O mod n for v ¢Link(u; G) U {u}

Proof

Let {vy,vs,...,vp} be Link(u;G). For k = 1,2,...,p, define walks 7, with
length 2 by 7%(0) = u, 7%(1) = v, and 74(2) = w. Then D(})(vx) =1 mod n
and D(7)(v) =0 mod nfor v # u,v;. Set T = D(v)) i #D(vs)ma# -+ #D(vp)Tp-
Then we have 7(0) = v, D(7)(vi) = D(vx) mod n and D(r)(v) =0 mod n for
v ;é U, V1, U2y« - - Up:

g.e.d.

Proof of Lemma 4

Note that G is connected. Then there exists a walk p such that p(0) = uo,
p(m,) = uy and p: {0,1,...,m,} = V(@) is surjective, where m, is the length
of p. For k=0,1,...,m,, set T'(k) = UX_;Link(p(i); G) — {p(k)}. By induction
on k, we will prove that, for £ = 0,1,...,m,, there exist walks 7 such that

D(7e)(v) = D(v) modn for v € T(k)

and 7,(0) = p(0),7k(ms) = p(k), where my is the length of 7. Note that
T(0) = Link(p(0); G). Then such 7, exists by Lemma 7. Suppose that there
exists 7, as aboves. We define a walk 71, such that

() = Tr(7) for 0 <i < my
plk+1) fori=mg+ L

3



‘Then D(r;)(v) = D(v) mod n for v € T(k). By Lemma 7, there exists a closed
walk 71,1, such that 7., (0) = p(k +1) and

D(Fes1)(0) = (D ~ D(73))(v) modn for v € Link(p(k + 1); G)
ba)(v) = 0 mod n for v ¢ Link(p(k +1); G) U {p(k + 1)}.

Put 744y = r{#741. By Lemma 5, we have
D(7r41)(v) = D(7})(v) + D(Fe41)(v) mod n for any v. Then
D(7k41)(v) = D(r)(v) mod n for v ¢ Link(p(k+1); G)U{p(k+1)}. Therefore
D(Ti41)(v) = D(v) mod n for v € T(k) — Link(p(k + 1); G) U {p(k + 1)}.
Moreover D(ry41)(v) = D(74)(v) + (D — D(7;)){v) = D(v) mod n
for v € Link(p(k+1);G).
Then we have D(riq1)(v) = D(v) modn forve T(k+1)Put = Tm,- Note
that T'(m,) = V(G) — {u1}. Then 7 such that 7(0) = up,7(m) = w; and
D(7)(v) = D(v) (v # u;), where m is the length of 7.

q.e.d.
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On the Functional Central Limit Theorem
for Walsh series with general gaps
by
K. Ohashi

ABSTRACT. Let {wp(w)} be the Waish system by Paley order, {nk} be an increasing

sequence of the natural numbers and {ax} be the sequence of real numbers with 12-
divergence. From {nk} and {ai} , we define the partial sum of Walsh series as

k
Sp(w) = 2 a;W, (o) (k=1,2,..). Using Sp(w), we define Xy, : Q=[0,1] = C[0, 1] as
j=1

2 a2
— Af

L Y .Y
X, (@) = Y i+ Gpaywy,,, A,?ﬂ ~ A;,f}’ if Aﬁ <ts Ai (k=0,1,...,n-1).
This paper shows the set of conditions for the functional central limit theorem of Xp(t,w)
which includes a new ‘diophontine’ type condition and with this set of conditions,

Xp converges in the sense of distribution to the Wiener process W in (C, @).

§ 1. Introduction.

In this paper we show the Functional Central Limit Theorem(FCLT) for the Walsh
series with general gaps. This paper is different from the previous one {6] in the point that
the present materials constituing our stochastic processes are not generally martingales. It
is easy to see that our theorem is more general than the case in [6]. But it is rather difficult
to treat the remainder. Therefore we use the maximal type inequality for the partial sum of
the Walsh Fourier series. In [6], we gave the proof of the theorem by using B.M.Brown’s
theorem. However, from the point of the real analyst’s view, itis desired that the proof
shall be by the direct proof without Brown’s theorem and complicated methods.
Therefore, we will give the direct proof in the following.

Let {w ()} be the Walsh system by Paley order and these functions are defined on the
interval [0,1] and only take values of either -1 or +1. Usually these functions are defined
as follows. Let {rn(«)} be the Rademacher functions , that is,

Fo(w)=1r(w)=10n[0,12), 1(w)=-1on[1/2, 1), 1,(w+1) =1, (w),

Nnw)=rZw) k=12,.),
and then the Walsh functions are defined as

[+ -]

W, =1andfor 1 =28k2k’ w, ___Hrfa_

Now, let {ny} be an increasing sequence of the natural numbers and {ay} be the sequence
of real numbers such that

(1.1) A’= zakz — 40 as n—00,
k=1
From {ny } and {ay }, we define the partial sum of Walsh series as follows;

Si(w) =Y aw, (w) (k=12,.),
=1
and consider them on the probability space (Q F,P) (Q=[0,1], F = the o -field of Borel
sets in Q, P = Lebesgue measure on F ). Using Sy(w), we define X, : @ —=C[0, 1] as
follows:



, | 1A - A] A, ;
t,w =_S_|n’+wn 44, o _ists-k_:l..
Xl =g Ot et G g W R

(k= 0,1,...n-1). Here we call Xn{t,w) the random function on [0,1].

As the preliminary, we see that Xp(t,w) is continuous in [0,1]. Under the conditions
below, Xy converges in the sense of distribution to the Wiener process W in (C, C ) where
C denotes C[0,1] with the sup norm topology and ¢ the Borel o -field generated by all

open sets in C. To describe our results for this problem , we need the following notation:
for two natural numbers n and m, we define the addition n*m by

n*m=2! ¢,~¢ 12/ wheren= Est’ , m= zej'Zj )
7=0 j=0 7=0

Note that Wn-Wm =Wn*m. Given the sequence {nx} and {ay}, we use also the notation,

(1.2) p(0)=0, pk) = Max {j:n <2k}, k=123,.,
P(k+1)

(1.3) D;=0,Dk= Yaw, , Bx=Apw, k=0,1,2,...
J=p(k)+1

Let n be an integer such that

n = NN, 271 sm<np<2i ,and 1.
Then let Ej (n) be the set of the pairs (ny, Ny) satisfying n= niy*ny , Ty <0y <2! and let

#E (n) denotes the cardinarity of E (n). In § 2 we require such a ‘diophantine’ type
assumption such as

#Ej(n) = o(¢()))

where o(1) is uniformly in v and ¢(j) is a nondecreasing function satisfying

(1.4 _iqb(j +D(L- p(Dp(j+D™)B.(B}., - B)) = O(B,.,).

In thejfollowing, let (C, ¢ Pw) be the probability space and Py be the Wiener measure.
8§ 2.Results.
For the random function Xn(t) defined in § 1,let {P,} be the sequence of probability
measures on (C, #) determined by the distributions of {X (t,w),

O=<t=1}. Under the notations, we show the following theorem;
Theorem.

Let the sequences {n, },{a,} and { ¢ (k)} satisfy the following conditions
(2.1) pG+1)pG)—1 as j— <0,
(2.2) an =O(An/V'n) and An — ®© as n— 0,
and
(2.3) #Eji(v)=0o(¢(j) uniformlyin v,
where ¢ (j) satisfies (1.4).
€n we have

P, =P, weakly asn — 0,

From now on, we abbreviate the conclusion of the theorem as
(2.4) Xn = W asn— o0, (see[2])
Remark 1. |

bgl)uf theorem is the best possible in the sense that if we replace #Ej( v ) = o( ¢ () in(2.3)



(2.5) #Ei(v) =000y,
then the theorem becomes false (see[5] ).
Coroliary.1
Let {a,},{n,} be
(26) n,/m =1+ck® O=a=12,¢>0), k=12,..

27) A;=0, An— 00 and an =o(An/n® ) asn— OO,
Then we have (2.4) (see [4]).
Remark 2.
The other examples can be found in [5] .
Corollary 2.
If we construct the Xn(t) from the S, (¢) replaced by the partial sum S (t) in § 1, then
we hold the same conclusion of the theorem(see[6]).
§ 3. Proposition and Lemmas.
The proposition is a B.M. Brown’s theorem for the concrete martingale, but our
conditions are a little different from the ones given by him. The lemmas below are for the

proof of the following proposition:

Proposition.
Under the conditions of the theorem, for k = 0,1,2,..n-1, let

1 i th_gz k el
3.1) Yy =—{SA, +A 21— =% st s =
( \ B-,{j-E—l ! * Bknh - li- B: B:

2

thenwehave ¥ =W as n— .

The essence of the proof is to show that Yn has the properties; 1) Ynis
tight and 2) the finite dimensional distribution of Yn(t) converges to the finite distribution
of W(t).
Here the sequence Ya(t) is said to be tight if for each ¢ >0, there is a compact set
K, €C, for which
PY{(K,)>1-¢ foreveryn =n,.
By the Prohorov’s theorem (see [1]), this definition is equivalent to the relative
compactness of C , thus if we could prove
) V>0,3a>0: (Y, 0)>a)<n (a=12,..)
i) Ve >0, gm; limsup P{Itsulpa 1Y () =-Y(y)l>e}=0
et 71> O -y
then we would obtain the tightness of the Y (t). B
By the construction, i) is evident. Thus we prove ii). However for the proof of ii), we
need the following lemmas 1-3.

Lemma 1.(I57)
Under the conditions of the theorem, we have

n-1i
. - 2 2
(3.2) 3Ln;E(an22)Aj ~-1*) =0.
J-

Lemma2. . o _
Let { M }(j=1,...,n) be the L' - martingale sequence. Then the following inequality holds,

for A >0,

1
P{max|M, >2A}= [ —IM, 1dP.
is jsn M 1> 2}
Proof of Lemma2

We give the simple proof. Let



={max| M 1>2.}={ M > leu U{max I M, 1< 22,1 M, > 22}

isjzn
:UE]., say.
Since { M % 1s SLbrnamncale
1 1
KE)y=—Y (M |dP=—Y {IM, |dP={—IM,|dP
(&) Zn! <2A;21;{ R

L 1 1
=( + N— IM_ |dP < — | M_idP + = P(E).
Fﬂ{l.!;b}} ENYl M, 1sA} 2A' A {Ibf,lll.i} A, 2 (ﬁ)

1
Hence, (E)< [ — | M | dP. This proves the Lemma 2.

{M, 1>} A’

Proof of Proposition Now by (2.1) and (2.2), we have

P k+1
ot =08, log XXy L o(B2 ) ask — .
j=plR)+t p(k)
Thus,

33) B, -B' =0(B.,) asn—

Let us prove the Iollow*p g (3.4) and (3.5) equivalent to ii).
(3.4) forany a, suchthat 0 <, <, <..<q,, <q, =1,

(Y, (@), Y, (). V(e )——W(a,), W(a,),.... W(e,)),
(3.5) for >0, hm hm supP{sup | Y, (#) -Y,(y)I> & =0.

n—wc lt-y<d
In order to prove (3 4) it is sufficient to show

(¥ (@)Y (a)- Y (a),..Y (@) - Y ()

G0 —dﬂ-(W(ao), W(a,) - W(a,),...W(a,)- W(a,_, )
Now, if we put
m, =max{m=0;B, sa,B’}, (j=012,..k},
then we have
E{lY,(a,)-Y,(B, /B)I"} = BJEA; =o(D),
since (3.3) holds. Hence we have
Yia)- (B,; /|BYy—2>0 as n—®,

Thus, in the place of proot of (3.6),itis sufflcxent to see that

( n-1 fs} Z& l}-l l& —1 Z& .)
(3.7) J—mo+1 J-;x'*l j=m;,2.;+1 !

—=(W(a,) - W(a,), W(a,) - W(a,),....W(a,) - W(a,_,)).
However using the technique of H.Cramer and H-Wold, it suffices to give that k-
dimensional characteristic function of the left side of (3.7) converges to the characteristic
function of the right side. That is, for every t, t,, ..., t,, we can simply prove



] 1 k
L -~ .2
(3.8) Eexp{lzl t,B, zé} exp{—Eth (a, -
r=mjg+ Jj=
Now for the proof of (3.8), we set
!tj ifm,, <r<m,

r

j=1,2,...,k
{ 0, otherwise (/=12 )

and

6 =max 6, I=max|1,, D, = B/6A, T = 3 D,
720

rsm isjsk

and .
ol =31 (B, - B. ) B
Then itis sﬁ%}icient to prove
(9 lml [exp(iT)dP- exp(—%oj) =0
For, since, by (3.3),

Os<aq, —B' /B < (B 41
Following D L. McLelsh’ s method [3], let us put
j-1

Z,= D3 D <267, j=012.n-1

={Z =D, forsome j <nj},
then we have, by Lemma 1,
n-1 -1
(3.10) P(E) = P{E D’ >26°} < P{B;°0" zAi. >26°
’ &

n-1

= P(B"EA- -1>1) <—E(I “ZEAZJ. -1

7=0

— 0 asn—> o,
Nexi, if we set

Jmm{/sn I D >29}112D >26°

J, =
l n- 1 otherw1se

then we have
1 n-1 I n-1

(3.1D ﬂﬁ(1+lZ)I dP = fT[(H—Z XpP

0 J-O QJ-O

a,)} asn—> o,

B,fl]_)/B:=o(l) as n—> o,

= [‘exp{EDz}\H D})= (1 +fD*dP;

% j=0

1t

& (1+0°B” fEA‘dP) & (1+ 6.

0J=0

To see (3.9), since by (3.10),
Edff‘r“dP s P(E) — 0 asn— x,

it remains to estimate the expectation of exp(iT, ) on E°.



Noting| Z, |= 28 on E° we use the formula

et =(1 +it)exp{—t—2:-+0(l )

if t is in the bounded range. The following estlmate holds:
n-1 r~1 n-1

[ e"dP = = /.. ﬂ(IHZ)exp{— EZ +0(§‘IZ FYydP

1-0

=J: H(‘ "'lef’eXp(__EZ;)dP

* e H(“’Z )@XP&-—EZ )1exp0(2!Z F) - 1}aP

1-0 Jj=0

= Il(n)+ (n), say.

For I ,(n), if we note that the absolute value of the integrand is =2, then itis enough to
show that

-1

B

Sz, ’— 0 (n—> «) in probability .
7-0
For, since
n-1
ESZ P< max!|Z IEZ2 <20 max|Z |
=0 Oxjsn-1 Osjsn-1
e
< 26 — max | A
B Ox<j<n-1
n
we have

(3,12) Pe< msaxn_l—l—mj ) = P{e* <232A I(B"IA 1> £)}

n-1

e’ EB"}‘ NI(B; A, 1> £)dP

<e? 2 Bf(ﬁ) A.dP)"*(P(B,' 1A, 1> ) i

<€ EB”( Ade)”2(8'2BfEA2j)“2

< 8—33;3(2'11.1 A.;'dP)uz("z_lEAzj)m - 8_33;2(’5]‘;&;61'13)“2
= 8_33'7[2{ o(B}(B},, - B} ) +o(¢(j+1)B, (1~ P(])P(J+1)'1)EL\' "
=o(1) asn— o, by (1.4). (see(3 3)in [5])

Thus, I,(n) =0 as n—00. For I,(n), by the mean-value theorem and Minkowski
inequality,



n-1 |
L(n) = [T](+iZ,)e*" dP
¢ 10
_ﬂ_—_l_ y \ £ 1 o 2 1 2
+ ][0+ iZ Yexp(-=> Z7) —exp(- =0, )}dP
‘éﬂc j=0 } 2 j=0 2
=1I,,(n) + I,,(n), say.
Now, for I ,(n),

1 @ s 2\ -l 2 242 /2
==e? (1+6*)” ({IYZ’-0’1PdP)"?
Jef 1+ 6" (f Sz -0,

) n-1
< C{| 2 02B(A: - EA’)I)}"
m; -1 '

k
<COS{[I1B” S(K -EN)FF* =0 asn—w,
j=0 rem;y+1

by Lemma 1. Next, for I, (n),

I poy

Im=(TT0+iZ Loyap - TT(+iZ Loy
u(n)—[JHo( +iZ;)exp(~50,) ‘LE( +iZ,)exp(-50,)dP

| nl : I,
=exp(—-—0,) - (1+iZ Yexp(-=0>)dP,
p-79)-f, JH pexp(-20,)
since Z; is martingale difference. From (3.10) and (3.11),

n-1 . I
IfEn ﬂ(l +iZ, )exp(—zaf, YdP |

<e” (146" exp(—%oj)P(En)”z 0 asn—> .

Combining these estimates, we have (3.9) and thus (3.4) has been proven.
Next we show (3.5). We take any given € > 0 and fix it.

Psup 1L,()-Y,()b e} < S P{ sup 1X,()-Y,(ko)l> 5‘”3—}

t-yl=d kdst=(k+1)d
and set

4. =0, g =max{jz1:B <kéB} (k= 1,2,...,%] +1).
The definition of Y_(t) implies .
sup | %,() -Y,(k8)ls max | SA /B, 1+2max|A, /B,

kbsts(hi1)6 qrsrsgean A Isjsn

for sufficiently large n. Hence we have

P{sup 1Y, ()~ Y.(»)b &} < S P{max | SA,/B I>¢/6}

lt-ylsd foer  Uthe j

=J, (n) + J, (n), say.



By (3.12), J,{n) — 0 as n—> oo. For J (n), if weput M, = > A, then we have
j=0

r-1
SA =M -M,_,
J~qx
and { M, } is martingale, because of the 0 -field generated by the suitable Rademacher
functions. By Lemma 2, we obtain
I>—B}

J(n) = S‘ E{—--B‘1 IM -M, b M, - qu_l 1 o

&4 &€ Z

€

<6+ EEG—ZI W((k +1)8) = W(kd) I W((k +1)8) - W(kS) k= _.}

kd <1
for sufficiently large n, using the main theorem in [5].
Thus, we have
12 =

|
J(n)<é x: exp(—-x*/28)dx
(=0 32 % Tomg 02

co<l1 € /12

24 1
<6 +—--(-5-- 0 exp(-¢*/2886) — 0 as 6 —= 0.
£
Therefore, (3.5) is completely proven. Combining (3.4) and (3.5), we have
Y, =W asn—00,
§ 4.Proof of Theorem.

Now for any given N, we can find an integer M = M(N) such that p(M) <N =p(M+1)
and define the random function W (t) by

1 AL - A2, A2 A
4.1) WN(z)=—{S +A 2” EOy if R g g —2E
e ' Ap(hl) Apz(k) Az Az

(k=0,1,2,...M). ""hen to prove the theorem it is sufficient to show that for any € >0
4.2) P{roriteg( (X, (H)-~Y,., (Hee—=0 asN — =,
We have

max | X, (1) - ¥,,,, ()< max | X, (1)~ W, (3]

+male(t)-—é”‘—MﬁY (t)|+’§i‘—”“‘l—l)maxl 6]
" osgal N A M+l \ A Ot V“

N N

=K, +K,, +K,,, say.
By the Proposition, P, = PY." (1 =1,2,...) are relatively compact, and by the well-
known Prohorov’s theorem, { P, } is tight. Therefore by the proposition that is equivalent
to tightness (c.f.[1]), for every 71>0and & >0 there exist

0 >0 and n, such that

4.3 Pi‘max 1Y.(H)-Y (s)i= E; t,s€[0,1]}<n ifnzn,.

On the other hand, (3.2) implies that fA /A_” o —ll<d ifN=N,.
Thus we have



A . Ay
max | W, () - 2227, ()= —w-maxiY (—2—0n-7, @I

Osrsl A\/ AN O=t=l M+

i i p(M+1)

< Zmax{l i (8) = @ s,t€[0l]} fN=N,

Is ~¢1<8 w+:

and by (4.3),
PUK, , 123) s P{nax| L (0= Y, () £s €0.1) = F<n
if Nzmax(p(n,),N,).

Sincemax 1Y, (Ois ors?ﬁl(l S, 1 +1A, D)/ B, ,wehave by the
submartingale inequality and (3.12),

A
PIK,, —) s P{max IS, 2 By (2 - 1)}
N
A ..
+ P{max !5 £ (oo pyry
OsksM+1 BM+1 6 AN
& 2 A(.M+1) 2 2
< (g ‘B,,..) (—T -1 ES, ., +0o1) =0(1) as N — .

N
Finally we estimate P(1 K, I> £/3) = 0 as N — o, If we put

r

M(x)= max | zaw (x) A, L,

plky<r<p(k+1) = Ph+1
then wehave K|, = max|A, |/ A, + max M, and thus

IsksM OsksM

PIK ,beld)s P(rnaxlA [/ A, >s/6)+P(maxM >¢/6)

1<k<M
=L,(1)+L,(2).
L, (1) is same as the second part estimate in K . Thus L, (1) — 0 as N—c0. For
LN (2) ’

€. il 2 & &, a 2 &
L,(2) = P < S MM, > < (2)7 5 EMICM, > )

M

<(= )‘g,kEM Y2 (P(M, > = ))“’

for the last parc we use Carleson—Hunt almost everywhere convergence theorem,
p(k+D)-1

L, (2)$('— ) FZ{A E( 2“1 n)}”z{( )"EA /Azl}uz

j=pCk)
M

S\_)_z CA—B/; EA4 )1/7(; EAZ )1/2
- ©)* CAF S BN B,/ A) 5 CAX(S EXY®

=0(1) as n— oo,
by (1.4) (see (3.3) in [5]). Thus we have proven our theorem.



Proof of Coroliary _
The conditions (2.6) and (2.7) imply Lemma 1. But it is the same lemma in S. Takahashi
[7]. Since itis easy to show the main part of the proof, we omat it.
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Differential Equations
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Hiroyuki Ishii
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0. Introduction
In this paper we consider a generalization of eigenvalue problems which contains two
parameters A, £ . This problem was considered in Zachmann[8]. The properties of relation
between these parameters have been considered when (1, i) is an eigenvalue in [8]. In this
paper we consider the analytic properties of relation between these parameters A, [ more
precisely when (1, 1) is an eigenvalue. The definition of eigenvalue will be given later in this
paper.
1.Differential Operator and It’s Boundary Condition

In this paper we consider the following second order differential operator:

2

p-[ P& Dl where D? =4 (L.1)
D*+4q(x)  rl(x) dx?

and let U,V ,---be two—dimensional vectors U = (u,v)T ,etc. The following equation will be

considered:



(L-AYU =0, (1.2)

(A
where A = (O j . This equation is equivalent to following system:

)7

oo
Ex—z—v+ q(x)v+p(x)u - Au =0,
) (1.3)

d2

\-a—b?u + q(x)u +r(x)v— wv =0,

where A and g are real or complex parameters. p(x) g(x) and r(x) are real valued
continuous functions in [a,3].

We define the boundary condition for differential operator L at x=a,x=>5 by following

equalities:

(j=12) (1.49)

{M(a, U)= aﬂu(a)+ a;,u (@)+ aj3v(a)+ a,v (@=0

N(,U)=b,u®)+b,,u' (b)+5,,(p)+b, (6)=0.

® a; and b, are real-valued constants and we assume

au/ ¢a14/ ,blz ¢b14/_ 1.5
ay Ay, by, b,

(@ a, and b, are independent of 4 and u .

(3) We impose following condition:

A0y + A0y — A Gy —A3dy = 0,
(1.6)
b12b23 +b14b21 - b11b24 -b bzz =0,



We call vector U = (u, v) , a solution of (1.2) , an eigenfunction when it satisfies (1.4) for
some A.Andwe call such A an eigenvalue and we express it by (A(u),4) or (4, u(1)).
We do not distinguish (A(x), i) from (2, z(1)). |

Chakravarty[2]  studied expansion problems when A= g . Hibert[5], Kodairal6],
Neumark(7] and Coddington—Levinson[4] considered eigenvalue problems for matrix
differential operator when A = 4 . In this paper we consider eigenvalue problems for the matrix
differential operator L when Aand u are given independently. So that our result is different
from that of above authors. Zachmann[8] studied an eigenvalue problem when Aand u are
given independently. Zachmann[8] showed that A = A(u) is continuous when (1, 4) is an
eigenvalue. We consider the analytic properties of A = l(u) more precisely than Zachmann
(8], Baghat[1] and Chakravarty{2] when (1, ) is an eigenvalue. Our method is different
from that of these authors.

2.Boundary condition vectors and bilinear form

Let ¢, =¢,(x)={x. 0.}, 9, =¢,(x)=1,, ¥, § be two dimensional vectors, where
X, ¥1,%,,y, arefinctions of x.We define P, or [¢,,4;,] by following:

X; x].

Yi Y

X; xj

Pg‘ =[¢i’¢j]= v, y_'

-+

This is called a bilinear form of two vectors ¢, and @, . Then we have following:



O [4,.¢,1=19,.4],

@ [4,.¢:170,

@ [4,,a¢; + Bp.1=alg:, 4,1+ Bl$,.4, ], where a, 3 are constants,

@Tf ¢,,4, are solutions of (1.2) or (1.3) for same (4, 1) then [, ¢,] is independent
of x but depends on (4, ).

We define 0(0,,0,,0,,0,,0,,0,) by following:

Q(®1’®2’®3’®4’®5’®6)

:Plz(P34Pss "P35P46 +P35P45)_PB(P24P56 ‘P25P46 +P26P45)
+Pl4(P23Pss "stpzs +P26Ps5)_Pls(P23P46 "P24Pss +P26P34)
+sz (P23P45 _P24P35 +P25Ps4)>

where @, =(g,, 4, | (1=1,2,...6) are 4~dimensional veciors.

Q(®],®2,®3,®4,®5,®6) has following properties:

0 0.,...8,,...0.,...0,)=-00,....0,,..0,,.,0,)

@  00,,..9,..9,..,0,)=0

@  0®,,..00,+5®,,..0,,.0,)
=a00,....,,..,0,,..0,)+ f06,,..0,,..0,,..8,),
where ¢, 8 are constants.

We note that for every six vectors @ (j =1,2,...,6) we have following identity:



00,,9,,0,,0,,0,,0,)=0. @.9)

We show this identity. If @ (j =1,2,...,4) are linearly independent from each other,

they are fundamental system in 4-dimensional vector space which we consider. So that

®, and O, will be expressed by linear combination of @ (j=1,2,...,8). Thus by

use of above properties () , (i) we have equality (2.2). Evenif ® ; (j=1,2,3,4) are not linearly
independent by useof above () and @) wehave (2.2). Thus we canshow (2.2).
Take solutions ¢, = (u,(a;x, A),v,(a,x, A)) (=1,2), ¢, = (B;x,A),v,(b;x,A))"
(j=3,0) of (1.2) which satisfy the nitial conditions:
u(a,a,A) = —a,,,v,(@,a,A) = —a,,u, (a,a,A) = a,,v, (@a,A) = a,,
U, (@,a, ) =~y , v, (@A) = —ay,u, (@,0,A) = a,, v, (Ga,A) = ay,
U, (b;b,A) = ~by,, v, (B;,A) = ~by,,u; (B;b,A) = by, v, (55, A)= by,
u, (b;5,A) = =b,,,v,(b;b,A) =~y ,u, (b;b,A) =b,y,v; (b;b,A) = b,,.
These solutions exist in the interval [a, b] by the existence theorem because (1.2) is a system
of liner ordinary differential equations. And these solutions are called boundary condition
vectors at x =g and x = b respectively.
We represent the boundary condition (1.4) by use of boundary condition vectors
& =, (a;%,A),v,(a;x, A))T (1=1,2), | ¢, =(u,;(b;x,A),v,(b;x,A)T (j=3,4).  Let
U, x)=(u(§,x),v(§, x))T be the vector in (1.4), where u(é, x),u'(f, x), v(§,x), v'(ﬁ, x)

have given value at x =¢& (a <éL b). The expression of the boundary condition by use of



boundary condition vectors is given as following:

{M(a, U)=[U(a,x).¢,(ax, A)(@)=[U.4,(@)= 0 =1,2) 03
NB,U)=[U(5,x) 4,(;x ANb)= U, 8, 1b) = 0(j =3,9) '
(¢,,¢,)a)=0,[4,,4,16)=0. ©.4)

Notice that (2.4) and (2.3) are equivalent to (1.6), (1.4) respectively. Following are important:
®  ¢laa,A)i=1,2and ¢, (b;b,A)(,=34) are independent of A .

This is verified by definition of ¢,,4,,4;.d, -

@  [¢,6,1(x) and [4;,8,)x) ammdependem of x and A.

Considering (%x)[¢l,¢2 1(x)=0 and (%x)[¢3,¢4 1(<)= 0 ,then we can prove that
[4,,8,1(x) and [4,,8,](x) are independent of x . Thus [¢,,4,1(x)= [4;,¢,1(@) =0
=[4,,8,1(x)=[4,,4,1(b) . This means [¢,,8,1(a) ,[¢;,$,1(b) are independent of A.
Thus [¢,,,1(%),[d;,4,)(x) are independent of x , A.

@ ¢ (a;a A)(I=1,2) are independent of each otherand ¢,(5;5,A)(j=34) areso.
This is verified by the initial conditions of g, (a;a,A)(=1,2), ¢,(6;5,A)(j=3,9 and (1.5).
[Theorem 1] Let U(x) =(u,(x),v,(x)) and V(x) =(u,(x),v,(x))" satj;ﬁz the boundary
conditions M(a,U)=0 and N(a,V)=0. Then [U,V)a)=0. Let above U(x) and
V (x) satisty the boundary conditions M(p,U)=0 and N(b,V)=0. Then [UV1b)=0.

(Proof) By the condition we have [U, 4, {a)=0=[U, 4, (@) and [V,4,1(a)=0=1V, $,1a),



where [4,,4,1(@)=0. Put U (x)= ¢ (x), V(x)=¢s(x) then we have
F,=0P;=0,F; =0,P; =0 and P, = 0. We have following identity:
0(0,,0,,0,,0,,0,,0,)=P,P, P — ByPy Py = Py(P Py — P,Py)=0.

This identity holds for every A. 4, (a; a, A) (I=1,2) are linearly independent from each
other. We can take ¢J.(b;x,A)( j=34 such that 4(x;a,A), @,(xa,A), ¢,(b;a,A)
and ¢,(b;a,A) are linearly independent from each other for given A .Then Wronskian
W (@, 8:.05,8.)= PuPrs ~ PuPoy #0 W (1. ¢5.4,.4,) will be given later). Noticing that
P, dose not depend on choice of ¢,,4,,4,,4, ,P must vanish for all A. Thus
Pis =[U (x),V (x)i(a) = 0 . Similarly [/ (x),¥ (x)](6)= 0. Thus theorem is proved. []

3.Inner product of vectors and Green’s theorem

We use the following symbols:

(i)()’=z)=y1zl +Y,z, Where y =()’1>.V2)Taz :(zl’zz)T’
(@) (y"z>:Lb(ylzl +Y,2,)dx,

especially | y" = ( V,¥)-
Suppose that two vectors F(x) = (F, (x), F, (x))" ,G(x) = (G,(x),G,(x)) have

continuous derivative up to second order. Then we have the Green's formula:

(F,LG)-(G,LF)=[F,G)(b)~[F,Gla). 3.1)



This is shown by calculation directly. We consider an eigenvalue A, =(4,(x) p) Cr
(m@)) and A, =4, () p)or (4u(A). We say A, =A, i and only if
()= 4,(u) ru,(A)=1,(2)). By use of 3.1) we have following result:

@ Let U, =(u,,v,) U=(u,,v,) be the solution of (1.3), (14) for the different

eigenvalue A,,A, respectively. Then (U,,U,)=0.

This is verified as following. For u we take A, ()= A,(u), why A, # A, . By use of

Green’s formula we have following relation :
(U,,LU,)-{U,,LU,) =[U,,U,)6)-[U,,U,(a).

U/x)U,(x) satisfy the given boundary conditon at x=a,x=5b. So that

[U,,U,¥8)=0=[U,,U,](a) by [Theorem 1],and we have (U,,LU,)-(U,,LU,)=0.

By the property of inner-product (i) and some calculation we have following relation:
(U LU, ~(Uy, LU, = (A (1)~ 2y ()] 1, (), (e)e = 0 -
By the condition A, (,u)—— A (y) # 0, we have J-bul (x)-u2 (x)dx = 0. Similarly, if we take

p,(1) and u,(1) we have Ibvl(x)-vz(x)cixzo. Thus we have, (UI,U2)=O, the

orthogonal relation between U, (x) and U, (x).

We express 4,(a;x,A)(/=1,2) and ¢,(b;x, A)(j=3,4) as following:



o, (@, %, A)=(, (@3, 2, p) v, (@;x, 2, 1)) = 6,(@;x, A, ) (1 =1,2)
8, (6;%, )=l (5;x, 4, ) v, (b:%, 4, 1)) = 6, B, x A, 1) (G =3,0).
Let A, # A, then we have following relation by calculation:
(8lax, A, 1), L8, ;% 2, 1)) = (8, (b, Az ) L (@3, 2, 1))
=[x, A, 1) 8,85 %, 4y, 1)) ~[¢ (%, 40, p2).8,(B;%, 4, 1))
= (@x, 4, 1) 8, (B;x, 2y, 1))0) -8, (2%, A5, 1), 8, (B5 %, 4, 1))
Al A, 1) (9, (05,40, 12)= 6, (s, 2, 2 1B)
~[{g, (@ %, A, 1) - 8, (@ x, 2, 1)), 8, (B3 %, Ay, e -
[4, (a5 %, 41, 12),8, 5%, 40, 1)i(x) and [6,(a;x, A, 1), b, (B %, Ay, 2)}{c) do depend only on
(A, 2) or (A,, ) respectively and we denote them P, (4,, z2) or P,(A,, 1) . Notice, for all
(A, 1) and (4, 1), @, (6:6, 7, 1) 6, (8;6,4,, )y =0, {4 (@2, A, 1) - ¢, (@2, 2y, 1)}
=0 and {g, (b:b, 4, 1)~ ¢, (b:0,4,, 1)t =0, {$/ (@0, 2, )~ ¢, (@0, 5, p)} = 0. Thus
(8@ %, 40, 1) 48, s %, Ay, 1) - 6, (3%, 4, 1]} )B) =0 5
[{¢, (a0, A4y, 1)~ 8@ x, An, 1)}, 8, (53 %, A )M(@) =0,
independently from (4,, ) and (A,, 1) respectively. Thus we can verify following:
(8.2, 1) L6, 0%, 2, 1)) = (¢, (5, p2) s A, ) = By (0, 10) = By O, ).

On the other hand we have



(6,0, 20, 1) L, (6,2, 1) = (8, (B35, 2, 12), L6 (0,20, 1))

:(/12 —A,I)Jju,(a;x,/ll,p)-uj(b;x,ﬂz,y)dx.

When 1,,4, = 4 ,we have the following relation:

© Eu, (@, 4, 1) u, (b;x, A, p1)dx = —(% A)Plf (*, ), (.2
[ viax, 2, p)-v, (b, 4, ek = —(%ﬂ)l’zf (4, ). 3.2)

4 Figen values and eigenfunctions of differential operator L
In this chapter we consider the  eigenfunctions corresponding to the eigenvalues
of differential operator L. Take four boundary condition vectors as following:
¢ (@ x,2, 1) = G, (@ x, 2, ) v, (@ %, 2, ) (1=1.2),

8,6, 4, 1) = e, (B, 2, 1) v, (s, A, 1)) (G =3,9.

We make Wronskian'  with ¢, (a;x,4, ) U=1,2), ¢,(B;x, 4, 1) (j =3,4x

10



u, u, u; u,
v, v

W(¢1,¢2,¢3,¢4)= l

Y,

i -

v, v, ¥

Lo
L

u

|
L -
<
w

o 4

Difforentiating  W(4,,4,,4,.4,) by x, then we have W.(4.4,.4,,4,)=0. Thus
W(g,,b,,4,,4,) dose not dependon x but depend on A and g.We denote it by
W(l,p). Bysome calculastion we have following equality:

W(A, )= PyPy = PPy + PPy, = ByPyy ~ PP,
[Theorem 2] The eigenvalue A, (u) is a zero (1 (1)) of W(A,1). Conversely if
(., (u), 1) #s azero of W(A, 12), there is an ejgenfunction corresponding to (A, (1), 1)
(Prood) Let ¢,(a; x, 4, (1) 1) 1=1,2) and ¢, (B;x, A, (1), £2) (j =3,4) be the boundary
condition vectors for (4, (u), ). Notice that P, (A, (u), )= P,,(,(1), £)=0 by .4
For any eigenfinction y/(x, 1, (1), 1) we have following relation:

wla, 4, (), 1), ¢, (a;a,4, (u) w)l = 0

{[w(b, 2,() 1), 8,6, 2, () ) = 0.
wlx A, (u) 1) is given by a linear combination y=A-¢, +B-¢,+C-¢,+D-¢, why
¢,(0x, 4, (1) 1) 1=1,2) and ¢,(B;x, 4, (u) 1) (j=30) form a fundamental system

@.n

(4,B,C,D are constants notall zero). Take C, D, not both zero, following holds by (4.1):
C By (4, (1), )+ D - Py (4, (1) ) =0,
{C Py (A, (1) 1)+ D- Py (4, (1), p) = 0.
Bliminating C,D we have B, (2, (42), s)Poy (A, (¢4} 1)~ P (A, (12), )P (2, (1), 1) = 0.
Hence (A, (), 1) isazero of W(A, u). Conversely, let W(A,1)=0 at (4,(z), )
Then there exist constants 4, B,C,D suchas,at (A, (u), 1),
w(x)=Ag, + Bg, =Cé, + Dg,, 4.2
where A, B can not both vanish why #,, ¢, are independent from each other. Similarly C,D

can not both vanish. Hence w(x,A,(u), ) is not a trivial solution of given differential

equation (1.2). It follows from (4.2) that ,at (4, (e), 2)

11



[v. ¢, Ma)=0 (1=L2)[y, 4, b)= 0 (j =34). @3)
By 4.3) y(x) is an eigenfunction for the eigenvalue A, (1) G, (w)p).0
We express it by w/(x)=y(x, 4, (1) uk=w(x, A, (2)) andso on.
[Theorem 3] The eigenvalues A, (i), ie (A,(w), 1), the root of W(A, 1£)=0 are
all real.
(Proof) This follows in usual manner. [J
We study the zeros of W(A,p) at value (A,(u)x)EA,(1)). We consider the
eigenvalue (1, (1, ), 11, ) for fixed p,. We express A (i,) by A, for simplicity for the
moment. Two cases arise:
Case() W(A,,u,)=0,but at least one P, #0 at(ly, 1, ),
Case() W(4,,u,)=0andall P, =0 at (4,,4,).
Case(). At least one B, #0,say B, #0,0n (A,,4,). Snce W4, 1)=0 at (4, 4,)
it follows that there is an eigenfiunction
w(x, Ay, tt)=A-¢+B-$,=C-$,+D-4,, @4
where both 4, B andboth C,D can not vanish. By use of (4.3) we have
A-E3+B-P23=O=C-P23+D'P24. @5)
Since P, #0,if A=0 then B=0.Thus A#0. Similaly D 0. Substituting
Band Cin@4) by @5 gives at (g, 1),
A- (P, - Py )= D (Pads —Puts)- @8

(4.6) is expressed by use of components of @, (j=1,2,3,4) as following:

{A (Bott = Pyts) = D- (Bt~ P »
A-(Pyv, = Pyv,)=D-(Pyv, - P,yv3)
¢,,4, are linearly independent from each other, so that Py, — P, # 0 for some
x(@ < x<b) and |P,¢ - P,36,] #0 . Thus we obtain following:
[Pt~ Baiy]| 20 or [Py~ Bavy] 0. @

By @), (47, 3.2 and (32),at least@.8) or (4.8) isverified:

12



0% )Pt ~ Pl = Pt W, ), &

0% (4L )Bv, ~ vl = ~Bo oyt W, 11,)- @3

 Hence by (4.8) and @.8), (A, (1, ) 1,) or (%, 2, (4, )) is & simple zero of W (3, 1,) in the
(e . In general, (1,(u), ) that at least one P, (2, (x), 1) dose not vanish is & simple
%10 of W(A, ). Thus the eigenfunction corresponding to (44,4, ) is given by constant
mitple of P, (A, 11 1, (%; Ao, 6 )= Py (Ao 1208, (6; Ao, 115) oF

Psos 850, (; Ay, 12, )~ P, (Ag, 220 M5 (; Ay, 14, ). The normalized ~ eigenfimction is

wlx, Ay, 1,) = { }{stfbx ~ Pt}

k
/{P (Ro» 46 W7, o, 2, 2
sere g =g (a;x, 49, 18,) » 4, = (@ %, 2y, 11,) and k, isa constant.

[Theorem 4] We suppose W (A, 1, )= 0 and at least one P, 0 at (4,,u,). Then there
exiits  one ejgenvalue (1, 1) = (A, (1), ) In the sufficiently small nefghborhood V' of p, .
And there exists one ejgenfinction y(x, A, (1), 1) corresponding to (A, u)= (A, (1), 42) in
V.

(Proof) Since W (1, u) is a regular analytic function in the small neighborhood of
(s i) and (A, 2, ) is a simple zero of W(A, u), for each pe¥ (¥ is a small
neighborhood of 1,), W (A, 1) has a simple zero (4, 12)= (4, (), 42) . By [Theorem 3]
there i an eigenfinction y(x, 4, (12} ) or (4,1)= (A, () ). O

Case ). In this case 7, (2, 4, )= 0 (=1,2, j =3,4) we have following expression:

W (R 1) = Py (R 0 Prs (R )~ Prs Gl 0 )Pos i )= 0
W (R 186)= Pray Gl 1Yo (s 1)+ Po Gl 80 P (s 1)
= Pryy (o 110 P (B 10) = Pos (s )P (B 10) = 0
W, (Ao 40) = P, (Ro» 10 VP (s t10)+ Bt (s 10 P, (B 1)
= Poy, Clos 11y P (s 110~ P (s 10 )Pis (s 10) = 0
W (o 10) = 208y G 0Py (s 10) = P (i 0P U 1)
o 10)= 2Py (s 1 P B )~ Pr s 1 P s )
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W os 186) = P, o, 6 WP (s 110 )+ Pra (o, 226 )Prs . (o, 1)
- P24,,('10>ﬂo )Rax(’lo’ﬂo)'Pm(ﬂ'o’ﬂo)ﬂsﬂ (/10»“0)-
{Theorem 5] Let ¢,,, be linearly dependent on ¢ ,4, at (A, 4,), then P,,P, P, and
B,, vanish there. Conversely P,,P,,, P, and P,, vanish at (1,,u,), then ¢,,4, are
linearly dependent on ¢ , 4, at (Ag» 15)-
(Proof) We suppose that ¢, ,@, be linearly dependent on ¢, at (4, 4¢,)- Then
8, (s, 29, 11) = A- (@, 4y, 11, ) + B $ (a3, A, 115)
8,0, 20, 116) = C - (@3, A9, 11, )+ D - ¢ (@5, 40, 1),
where A B,C,D are some constants. By use of above equalities we have
Py=Py =Py =Py =0 at (A, 4) w0y [4,4,]=0,[4,.4,]=0,i4,.4,]=0 by use of
the properties of bilinear forms. Conversely we suppose P, = P, =P, = P,, =0 a (4,, y)-
Pu/t ¢, =(uj,vj)( j=1,2,3,4) then we have for every minor of order three of W(lo, ,uo) as

following at (/10, ,uo), say:

The same results hold for other minor of order three. Thus W(/?,o s Mo ) =0 and ¢,,¢, depend
on ¢ .4 at (4, H, )- Theorem is proved
By this theorem, at (/10 , ,uo‘), we have the expression:
{ B, (5%, A, 15) = A+ 3, (B5%, Ao, 1y )+ B (@, 2, 11,)
Ba(B;x, g, p15) = C - (B3, Ay, 1)+ D+ B, a3, A 11,),

where A=4-D-B-C#0.Put

4.9

Il}' = J;bui (a;x72’03ﬂ0)uj(a;x:ﬂ’0>ﬂ0w ’ij = J‘:Vi (a;xaZO’”O)'vj(a;x’ﬂ'D’ﬂOﬁx

then we have [, =1,,J, = J,; (i, j =1,2). By (3.2) ,(3.2) following hold at (o, 24, ):

ji>
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{—-1)131 :A'[“ +B']123_P14,1 =C'I]1 +D']12

4.10)
~Py, =41, +B-1y,~Py, =C-I,,+D-1,
-PB;: :A'Jn +B'J12>“Px4,a :C'Jn +D‘sz,
@.10)
~Pz3ﬂ =4-J, +B-J22,-Pz4# =C-J, +D-J,,

By the condition W, (%, ,)=2A(, ~1,, -1, )W, (A, )= 20, -, - Jp,) and

Woulo,its)= A@L, -y ~ 1, -, - Ip,-Jy,)- By the definition of J,, J, and (4.10),

(4.10°) following inequalities hold:

I, < {‘jluluzldx}z s (ﬁ"lzﬂ)(fuzzdx) <y Iy,

S < {J:lvlvzldx}z s (ijlzcb")(f"zz‘b‘) Sy dy -

If 1, =1,-1, and J,> =J, +J,, then ¢ must be linearly dependent on ¢,. This
contradicts our assumption. Thus I,,* <I,,-1,, or J,,> <J,, -J,. Thus we can prove
W, (ﬂo,uo):t 0 or Wﬂﬂ(ﬂo,yo)i 0 . This means that (lo,yo) is a double zero of W(/l,,u)
why W(Ay, 115 )= 0,0, (g, 12) = O, W, (g, 11 )= 0.

$3(b;x, A, 11y ) and @, (B;x, Ay, 4, ) satisfy the boundary conditionat x =a,x = 5. Thus
the normalized eigenfunctions y, (x,4,,4,) and w,(x,4y,4,) are expressed by linear
combination of ¢, (b; X, Ay, ,uo), #,(b;x, 2, 15,),in other words, these  normalized

eigenfinctions are expressed by linear combination of ¢,, ¢, :

_(4¢, +B4,)
i / J6 )
v, = },{(A¢1 +B¢%/W” (<¢3,¢3>(C¢1 +D¢2)/(¢3,¢4)},

where (B, 8;) = A2(8,,0,)+24B(4, . ¢,)+ B {$:.4.)
<¢47¢4> CZ<¢1:¢1>+2CD(¢I’¢2)+DZ<¢2’¢2>’
(6,,0:) = AC ($,4,) +(BC+ADXp\.0,}+ BD($..2).

it
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V= {<¢3’ ¢%4D - BC)}{l/\k‘él y) >(¢2’¢2) - <¢1 > ¢2>2 } .

Hence we obtain following theorem.
[Theorem 6] If W(A,,p,)=0and all P, =0 at (Ay,u,) , there is a double eigenvalie

(Ao 1) =4, (11, ), 11, ) and two normalized eigenfimctions v, (x, 3y, ,) and (%, g, it
COIIESpOIJdﬁ]g to (ﬂ'o ] /Uo) :(A'n (/40 )’ lu() ) *

(Proof) By above discussion, the existence of normalized eigenfunctions w, (x, 4,, &,) and
w, (¥ Ay, 11,) correspondingto (A, 1, ) is verified.(]

(Example 1) Consider the boundary value problem:

Vi=4-u,
u =4,

v'(0)=0,4'(0)=0,

v(1)=0,4'(1)=0.
This problem has been studied by Chakravarty[3) when A= u. We take vectors
8,05, 2, 1) = (0,0, 2, 1), (O 0, 4, 1), 6, (53,4, ) = b, @ 0,4, ), (56,2, 12)

(I =1,2;j=3,4) . Forexample we take @,,4,,¢,,¢, under the following condition:

2,0)=1,2'(0)=0,%(0)=0,v, (0)=0,
u,(0)=0,u,(0)=0,%,(0)=1v,(0)=0,
u,()="Lu; 1)=0,v()=0,v, (1)=0,

u,0)= 0,4, (1)=0,v,)=1v, ()=0.

About these boundary condition vectors we verify some identities by use of Mathematica:
1
Lul (07 x’ /la /1) ll3 (1: xa 2‘: ﬂ)ébC =

(oot ()" -+ coshl(24)“ 1)+ 32" inf 4“1+ sinhl (1) B2,
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[ 05,2, ) v, (3,2, e =

{aasleosi (24" 1+ cosh(Au)" 1)~ (1 snf(1 )+ s (1) Weu.
On the other hand we obtain following identities:

B (2, )= b (! sinl (1) + simb (31" 1) 2(ss/ 2)",

Pryi (A, 1) = — {oosl(A)™* 1+ cosh[(Au)* 1+ 3(a4e) ™ finf (Aze)™ 1+ sinh{ (10" )},
Py (1, )= ~ {2 oost )1+ coshl(s)"1)- 4% 4 inl ()" 1 sin 31)" .

Thus we can show
[0, 0%, 2, 1) 1, (50,2, ) = By, (3, ),
505 000,02 ke =, 0,0)

And the Wronskian for this problem is given by following:

W (A, 1) = ~(Apz)" sin (Aps)"* Jsinbl (2)* 1.
W (A, 1z) is an integral function of A, z and it's zeros are (1, 4)= (A(u) #)= (nm* /1)
(n eEN ) and they are simple eigenvalues for this problem. They are given by curves in

the A-u plane. The eigenfunctions for these eigenvalues are obtained as following:

v (x, (nﬂ)4 / M, ,u)= 05-nx- ((mr)2 / M, ly cos[(mr)x] - sinh| (mr)] .
!//(x, (n7)* [, /U) has # zeros in the interval [0,1].

(Bxample 2) Consider the boundary value problem:

Vi =1-u,
{u" =4,
4.v(0)-v'(0)=04- u(0)-4'(0)="0,
4.9(1)-v ()= 0.4-u(l)-u'{1)=0.
dition vectors

For this boundary value problem we determine the boundary con )
(¢ (x4,
8,0;%,2, )= (1, 05,2, ) v, 0.2, 1) 4, (6.2, 8)= fn, (2. ), G2 )
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(I=1,2; j =3,4) as the solutions of above equation under the following condition:

u,(0)=1,v,(0)=0,4,(0)=4,%'(0)=0,
1,(0)=0,v,(0)=1,4, (0)=0,,(0)=4,
1,(0)=1,v,(0)= 0,4, (0)= 4,v, (0)=0,
1,(0)=0,v,(0)=1u, (0)=0,v,(0)=4.

For these boundary condition vectors we obtained the following identities by use of Mathematica:

01, 1) 05 (oxpl(h- 4 - vl (- oss - - il %)

This W(/l, ,u) is an integral function of A,z. The eigenvalues are expressed by

(o (1) 1) = (25% , ,uj and (A, (1) p)= ((’W )4/# ,uj (neN). These eigenvalues

are all simple zeros of W(/l, ,u). Eigenfunctions are given as following:

w(x, 256/, )= e** sin[4] (64/1.4),

t//(x, (mr)4 [, ,u)= (e —e Xn2z? -16 )‘/116 +nix?)sin[nmx + a)(l/4p,~1/n? 4r?Y,

tan[a] =nz/4.

: y/(x,256/y, p) dose not vanish in the interval [0,1] and y/(x,(nﬂ)4/y, y) has n zeros in

the interval [0,1].
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